The Chemistry of β -Diketiminatometal Complexes

Laurence Bourget-Merle, Michael F. Lappert,* and John R. Severn

The Chemistry Laboratory, University of Sussex, Brighton BN1 9QJ, United Kingdom

Received March 11, 2002

Contents

1. Intr	oduction β	3031
1.1.	Scope of This Review	3031
1.2.	Some Significant Developments	3032
2. Pre Co	eparation of β -Diketimines and Their Metal mplexes	3034
2.1.	Synthesis of a β -Diketimine from a β -Diketone or 1,1,3,3-Tetraalkoxypropane	3034
2.2.	Synthesis of a Metal β -Diketiminate by Nitrile or Isonitrile Insertion into a Metal–Alkyl Bond	3034
2.3.	Various Other Synthetic Routes to Metal β -Diketiminates	3035
2.4.	Other Synthetic Routes to β -Diketimines	3035
3. Bo β-I	nding Modes and Structural Features of Diketiminatometal Complexes	3037
4. Dis Co	cussion of Specific β -Diketiminatometal mplexes	3039
4.1.	Group 1 Metal β -Diketiminates	3039
4.2.	Group 2 Metal β -Diketiminates	3040
4.3.	Early Transition Metal β -Diketiminates	3040
4.3	3.1. Scandium β -Diketiminates	3040
4.3	3.2. Group 4 Metal β -Diketiminates	3041
4.3	3.3. Group 5–7 Metal β -Diketiminates	3043
4.4.	Late Transition Metal β -Diketiminates	3044
4.5.	Group 12 Metal β -Diketiminates	3046
4.6.	Group 13 Metal β -Diketiminates	3047
4.7.	Group 14 Metal β -Diketiminates and a Phosphorus Analogue	3049
4.8.	Lanthanide and Actinide β -Diketiminates	3051
5. β-I	Diketiminatometal Complexes	3063
6. Co	ncluding Remarks	3063
7. Ac	knowledaments	3064
8. Ap (up	pendix (Added in Proof): 2002 Publications to End of June)	3064
9. Re	ferences	3064

1. Introduction

1.1. Definition of the β -Diketiminato Ligand and Scope of This Review

Although the β -diketonato¹ I and β -enaminoketonato^{2,3} II ligands are among the most ubiquitous chelating systems in coordination chemistry, the isoelectronic β -diketiminato ligands III have received only recent, but significantly increasing, attention.

 \ast Author to whom correspondence should be addressed (e-mail m.f.lappert@sussex.ac.uk).

This system is obviously of great interest considering the scope for variation of the R^1 groups on nitrogen, which may be hydrogen or alkyl, aryl, or silyl groups. The R^1 groups can also be linked with the R''/R'''groups to form either neighboring fused six-membered (**IV**) or five-membered (**V**) heterocyclic rings.

The β -diketimine is also related to a number of macrocyclic compounds, such as **VI** and **VII**. Macrocycles **VI** may, for example, be prepared either by (i)

a template reaction involving the co-condensation of a bis(β -diketonato)nickel complex with an *o*-phenylenediamine or (ii) a co-condensation reaction of pentane-2,4-dione with an *o*-phenylenediamine.⁴ Metal complexes derived from **VI** usually form out-of-plane metal complexes, as do the natural macrocycles such as porphyrin (**VII**), porphodimethane, chlorin, bacterchlorin, and isobacterchlorin.⁵

For the purpose of this review, focus will be solely on complexes of the monoanionic ligands, such as III-V. Our aim is to have covered the literature comprehensively to the end of 2001 (but see section 8).

The β -dialdiminato ligand **III** has R'' = H, and a few derived metal complexes have been made. The term β -diminatometal complexes, used by some authors, is therefore more comprehensive. [Curiously, a paper concerned with β -diketiminatoM(II) com-

Laurence Bourget-Merle was born in 1970 in Nantes, France. Graduate of the University of Aix-Marseille III (France) in 1992, her Master's degree was followed by a Ph.D. in chemistry (1996) at the University of Montpellier II (with R. Corriu and A. Vioux) on the preparation of polysiloxanes by nonhydrolytic condensation reactions catalyzed by Lewis acids. She was a Research Fellow (1997–2000, Marie Curie Grant) in the group of Michael F. Lappert at the University of Sussex (England), where she worked on the synthesis of tin and aluminum complexes based on *N*,*N*-centered ligands. She is currently working in the G. van Koten group, at the University of Utrecht, Netherlands, on the preparation and characterization (MALDI-TOF) of dendrimers.

Michael Lappert is Research Professor of Chemistry at the University of Sussex. A graduate of Northern Polytechnic, his B.Sc. was followed by a Ph.D. (with W. Gerrard) to which in 1960 he added a D.Sc. (University of London). He has been at Sussex since 1964, having previously been at UMIST (1959–1964). He was the recipient of the first Chemical Society Award for Main Group Metal Chemistry (1970) and then of the Organometallic Award (1978). He won the ACS–F. S. Kipping Award for Organosilicon Chemistry (1976); with the RSC (he was its Dalton Division President, 1989–1991), he has been a Tilden (1972), Nyholm (1994), and Sir Edward Frankland (1998) Medallist and Lecturer. He was elected FRS in 1979 and was awarded an honorary doctorate from Ludwig-Maximilians-Universität (München, 1989). With co-workers he has published almost 700 papers, 2 books, numerous reviews (including 5 previously in *Chem. Rev.*; the first in 1956), and a few patents on various aspects of inorganic and organometallic chemistry.

plexes (M = Mn, Zn, Cd) referred to these as "vinamidinemetal" derivatives;^{6a} another labeled some Zr complexes as " β -iminatoaminates".⁷] The acronym "[R¹₂nacnac]⁻" has recently been used for **III** with R' = H and R'' = Me = R''', by analogy with acac⁻; e.g., **III** with R¹ = C₆H₃ⁱPr₂-2,6, R' = H, and R'' = Me = R''' has been referred to as the ligand [Dipp₂nacnac]⁻.

Throughout this review the symbol $R = SiMe_3$.

1.2. Some Significant Developments

The field owes its genesis in the mid to late 1960s to classical coordination chemistry studies of homo-

John Severn was born in Doncaster, U.K., in 1971. He attended the University of Sussex, where he received his B.Sc. (Hons, 1994) in chemistry with management studies. He carried out his doctoral work in coordination chemistry under the supervision of Prof. M. F. Lappert. After finishing his D.Phil. degree, he spent 14 months working on reactive extrusion of polyolefins, for a cable-manufacturing company. Since then he has been a postdoctoral researcher at the Technische Universiteit Eindhoven, working with Dr. R. Duchateau and Prof. R. A. van Santen on silsesquioxanes as molecular models for immobilized single-site α -olefin polymerization catalyst systems, funded by DSM Polyolefins. At present he is working with Dr. J. C. Chadwick and Prof. C. E. Koning for the Dutch Polymer Institute on a similar subject.

leptic M(II) β -diketiminates (M = Co, Ni, Cu); the emphasis was on their synthesis, spectra, magnetism, and structures.^{2,8a-17}

A major development in the mid 1990s was the recognition that β -diketiminates **III** could play a useful role as *spectator ligands*, like cyclopentadienyls, by virtue of their strong metal–ligand bonds and their exceptional and tunable (by variation of the substituent R¹) steric demands. Thus, in 1994 we reported on the ligands [{N(R)C(Ph)}₂CH]⁻ (\equiv L⁻), [{N(H)C(Ph)}₂CH]⁻ (\equiv L'⁻), and [N(R)C(Ph)C(H)C(^tBu)N(R)]⁻ (\equiv L''⁻) in the context inter alia of the synthesis and X-ray structures of the crystalline metal complexes [LiL]₂,¹⁸ [SnL(Cl)Me₂],¹⁸ [SnL'(Cl)-Me₂],¹⁸ and [ZrL''Cl₃]¹⁹ and showed that the last of these was an effective catalyst (with methylaluminoxane, MAO) for the polymerization of C₂H₄ or C₃H₆.^{20,21}

These and other aspects were reviewed in 1995, in connection with the transformation of the bis(trimethylsilyl)methyl [CHR2]⁻ into the 1-azaallyl, such as $[N(\tilde{R})C(\tilde{t}Bu)C(\tilde{H})R]^{-}$, or β -diketiminato (L^{-}, L'^{-}, L''^{-}) ligand;²² for a review of metal 1-azaallyls, see ref 23. The significance of steric effects was further demonstrated by noting that (i) whereas [CoL₂] is a tetrahedral d⁷ complex, [CoL'₂] is square planar;²⁴ (ii) SnL₂ is too sterically hindered to be accessible, but crystalline [Sn(L)Br] is a monomer;²⁴ as is (iii) [NdL₂Cl].⁵⁴ As for (iii), it is noteworthy that even the most bulky substituted bis(cyclopentadienyl)neodymium chloride is a dimer. It also was already evident at that time that there was a *diversity of bonding modes* possible for such β -diketiminato ligands in their metal complexes; for example, in [ZrL"Cl₃] the ligand may be regarded as being η^5 -bonded to the metal, whereas in $[CoL_2]$ or $[CoL'_2]$ it is an *N*,*N*-bonded chelate.22,24

In 1997, the synthesis of a new β -diketimine, the conjugate acid of the β -diketiminate [{N(C₆H₃ⁱPr₂-

 a (i) $NH_2R^1, C_6H_6,$ azeotropic distillation; (ii) $[Et_3O][BF_4], Et_2O, -78\ ^oC;$ (iii) $NH_2R^1, Et_2O;$ (iv) NaOMe, MeOH.

2,6)C(Me) $_{2}$ CH]⁻ (= L^{'''-}), was published.²⁵ This ligand, in which each *N*-aryl substituent is almost orthogonal to the NCCCN plane (as also is the case for other *N*,*N*-diaryl analogues), is playing an increasingly important role, as the following selected examples i–viii, drawn from the post 2000 literature, demonstrate. (i) The crystalline complexes [ML^{'''}] have Al²⁶ and Ga²⁷ in the rare M(I) oxidation state. (ii) [GeL^{'''}][HO{B(C₆F₅)₃}] is at present the only germanium(II) cationic complex.²⁸ (iii) [Fe(L^{'''})CI] is a three-coordinate Fe(II) complex^{29a} and is a source of [{Fe(L^{'''}}]₂(μ -N₂)] and M₂[{Fe(L^{'''})₂(μ -N₂)] (M = Na, K).^{29b} (iv) [Cr(L^{'''})(Me)(μ -CI)]₂ with AlClEt₂ is an active catalyst for C₂H₄ polymerization.³⁰ (v) [Pt(L^{'''})-Me₃] is a moderately stable, coordinatively unsaturated, five-coordinate d⁶ 16-electron complex.³¹ (vi)

The Cu(II) complex [Cu(L^{'''}){S(Me)CH₂CPh₂S}] is a structural model for a type 1 copper protein active site.³² (vii) [Zn(L^{'''})(OⁱPr)]₂³³ and [Sn(L^{'''})(OⁱPr)]³⁴ are active catalysts for the living polymerization of *rac*-and *meso*-lactide to yield poly(lactic acid).³³ (viii) [Zn(L^{'''}){N(SiMe₃)₂}] is highly active catalyst for the living copolymerization of cyclohexene oxide and CO_2 .³⁵

 β -Diketiminates are now known for a large number of s-, p-, d- and f-block metals and a wide variety of substituents R¹, R', and R" for the ligands **III**, as summarized in Table 1.

2. Preparation of β -Diketimines and Their Metal Complexes

There are various synthetic routes to the β -diketiminato ligand, either as its conjugate acid or as a metal complex. Most involve the condensation reaction of a primary amine with either a β -diketone or 1,1,3,3tetraethoxypropane, thereby producing a range of β -diketimines. The other main method involves the reaction of a metal alkyl with 2 equiv of a nitrile, or the reaction of a metal 1-azaallyl with 1 equiv of a nitrile.

2.1 Synthesis of a β -Diketimine from a β -Diketone or 1,1,3,3-Tetraalkoxypropane

Until a few years ago the above procedures were the most common synthetic routes for the production of β -diketimines. Advantages include acceptable yields, the use of relatively inexpensive or easily synthesized reagents, and their availability for production in large quantities.

There are at present only two synthetic procedures for the conversion of a β -diketone into a β -diketimine. Both take advantage of the fundamental co-condensation reaction of a ketone and a primary amine. It should be noted that some modification has to be made (see steps ii–iv of Scheme 1) to avoid the reaction stopping after the first condensation, giving the enaminoketone (step i in Scheme 1).

The first of the reactions of Scheme 1 was reported over three decades $ago.^{8a}$

An alternative procedure involved converting a 1,3diketone into successively a ketoketal and then the β -diketimine (eq 1).^{8b}

A 1,1,3,3-tetraalkoxypropane (a β -diacetal) is also a convenient precursor. A standard preparation involved treating 1,1,3,3-tetraethoxypropane with an aromatic amine hydrochloride in aqueous ethanol at 50 °C for 1 h, followed by storage at ambient temperature to crystallize the β -diketimine hydrochloride and finally release of the β -diketimine with aqueous sodium hydroxide (eq 2).^{8c}

The reaction conditions of Scheme 1 and eqs 1 and 2 should be regarded as illustrative rather than prescriptive. For example, $H\{N(C_6H_3^iPr_2-2,6)C(Me)\}_2$ -CH was made from 2,4-pentadienone, or 1,1,3,3-tetramethoxypropane, and successively ethanolic HCl and aqueous $Na_2CO_3^{25}$ (see also ref 37). This procedure was used for a series of related β -diketimines and -dialdimines.³⁵

2.2. Synthesis of a Metal β -Diketiminate by Nitrile or Isonitrile Insertion into a Metal–Alkyl Bond

This involves insertion of an α -hydrogen-free nitrile R"CN or R"CN into the $M-C_{sp^3}$ bond of $M-CR_{12}R'$, where $R^1 = a$ silyl group, such as SiMe₃ ($\equiv R$), or (rarely) hydrogen. The probable reaction pathway is shown in Scheme 2. An alternative, starting with step ii of Scheme 2, is the insertion of the α -hydrogen-free nitrile R"CN into the M-C bond of a 1-azaal-lylmetal fragment.

The proposal of Scheme 2 was first suggested in the context of the reaction of eq 3 ($R^1 = SiMe_3 = R$, R'' = Ph or C_6H_4Me -4).¹⁸ Both steps i and ii of Scheme

2 involve an initial C–C coupling followed by a 1,3migration of the group R¹ from carbon to nitrogen. Such shifts are much more facile for R¹ = SiMe₃ than for R¹ = H. For example, the reactions of eq 3 proceeded rapidly in high yield in diethyl ether at 0 °C.¹⁸ Related anionic SiMe₃ shifts are well documented, but 1,2-rearrangements from carbon to nitrogen are more common³⁸ than the 1,3 here noted.

It was further shown that isonitriles R^1NC undergo similar insertions, as illustrated in eq 4 ($R^1 = C_6H_3$ -Me₂-2,6).^{39,40} This reaction was believed to proceed via two successive C–C couplings and 1,2-trimethylsilyl migrations.

2.3. Various Other Synthetic Routes to Metal β -Diketiminates

These have generally been restricted to transition metals. Treatment of a Ni(II) or Co(II) halide with LiNEt₂ has led to a number of β -diketiminatometal complexes, although in relatively poor yield, as in eq 5 (13% yield).^{9,10}

 $7 \operatorname{CoCl}_2 + 14 \operatorname{LiNEt}_2 \xrightarrow{\text{thf}}$

A platinum(IV) β -diketiminate was obtained by the co-condensation of eq 6.⁴¹

Interaction of a lithium amide and a tris(imido)manganese(VII) chloride under mild reaction conditions afforded the bis(β -diketiminato)manganese(II) complex of eq 7.⁴²

 $[Mn(N^{t}Bu)_{3}Cl + Li(NHC_{6}H_{3}Me_{2}-2,6) \qquad \underbrace{dme/toluene}_{}$

A useful route to *N*,*N*-diaryl- β -diketiminatoaluminum dialkyls involved condensation between a benzanilide and AlR"₃, eq 8 [R" = Me, R' = H, X = H;

R'' = Et, R' = Me, X = H; R'' = Et, R' = Me, X = Cl; R'' = Me, R' = H, X = Cl; R'' = Me, R' = H, X = Me; R'' = Et, R' = Me, X = Me].⁴³ The reaction pathway leading to the β-diketiminatoaluminum dimethyl [Al-{(N(Ph)C(Ph))₂CH}(Me)₂] (R'' = Me, R' = H, X = Hin eq 8) is shown in Scheme 3. In the absence of an excess of AlMe₃, the macrocycle **VIII** was isolable.⁴³

A β -diketiminatocobalt(III) complex was obtained recently via a new exotic route, consisting of condensation of propargylamine with a polymeric Co(II) basic pivaloate and oxygen gas (Scheme 4).⁴⁴

In some instances, notably for ligands such as $[{N(R)C(Ph)}_2CH]^-$ (R = SiMe₃), it is useful to gain access to the derived β -diketimine. This has been achieved by treating the alkali metal (M) β -diketiminate (M = Li, Na, K) with water (a controlled quantity),¹⁸ 1,2-dibromoethane,¹⁸ or cyclopenta-diene,⁴⁵ with concomitant elimination of MOH, MBr + CH₂=CHBr, or MCp, respectively. Use of dibromomethane generated the CH₂-bridged bis-(diketimine).^{18,46}

2.4. Other Synthetic Routes to β -Diketimines

An unusual route to a β -diketimine involved the reaction of a 4-aryl-1,2-dithiolium perchlorate or

Scheme 3

HC≡CCH₂NH₂

Me₃C

CH

H

Ή,

CH

NH₂CH₂C≡CH

sulfate with a primary aromatic amine, to produce a β -diketimine as its perchlorate or sulfate, which with sodium ethoxide afforded the free β -diketimine (eq 9).⁴⁷

A low-yield route to $[H\{(N(^tBu)C(Me))_2CH\}]$ employed ROC(Me)C(H)C(Me)CO and $2(^tBuNH_2)$ as starting materials.^{48a}

Another procedure was based on treatment of β -chlorocinnamaldehyde with a concentrated aqueous solution of the hydrochloride of a primary arylamine and subsequent neutralization (eq 10) (e.g., Ar = Ph = Ar').^{48b}

Unprecedented *N*,*N*-bis(phosphino)- β -diketimines H{(N(PR'_2)C(H))_2CH} (R' = Ph, NⁱPr_2) have been prepared in a one-pot synthesis using malonodinitrile, the Schwartz reagent, and a chlorophosphine R'_2PCl (R' = Ph, NⁱPr_2) (eq 11).⁴⁹

Reaction of a fluorinated imidoyl chloride with a ketimine yielded a β -diketimine (eq 12) (e.g., $R^1 = C_6H_4OMe$ -4, $R^F = CF_3$, $R^2 = Ph = R^3$).^{50a}

5-Silyl-3-pyrazolines were isomerized upon heating to yield a diimine tautomer of a β -diketimine, for example, N(Ph)C(Me)C(SiMe₂Ph)(H)C(Me)NMe from

N(Ph)C(Me)C(H)C(SiMe₂Ph)(Me)NMe.^{50b}

A remarkable low-yield conversion of a 5-nitropyrimidin-2(1*H*)-one into a nitro-substituted β -diketimine is illustrated in eq 13 (R¹ = C₆H₂Me₃-2,4,6).⁵¹

The β -diketimines are often precursors of their metal derivatives, either directly by metalation with an electrophilic metal (e.g., Li, Al, Zn) alkyl or amide or indirectly by a ligand transfer reaction between an alkali metal (often Li) β -diketiminate and the required metal halide (often Cl). In other instances, as in section 2.2, the metal acts as a template in the synthesis of the metal β -diketiminate.

3. Bonding Modes and Structural Features of β -Diketiminatometal Complexes

There is a considerable diversity of bonding modes for β -diketiminatometal complexes, as outlined schematically in **A**-**J**, in which, for the sake of clarity,

(i) the single pendant groups R^1 , R', R'', and R''' (cf. **III**) are omitted (except for **J**) and (ii) the rings in **A**-**E** and **G**-**I** are shown as being delocalized.

Bonding mode A corresponds to the situation in

which the MNCCCN ring is planar and the β -diketiminato ligand **III** behaves in a terminal *N*,*N*-chelating fashion. The conformational variant **B** shows the sixmembered metallacyclic ring in boat form and, in the limit, the M...CR' contact is close enough for **III** to be regarded as being η^5 - π -bound, particularly if the metal has unfilled d orbitals of appropriate symmetry (see, especially, section 4.3); in some cases, however, only the metal atom M is out of the almost planar NCCCN moiety. The essential feature of type **C** is that the ligand **III** in a binuclear complex is both chelating and bridging, so that one of the nitrogen atoms of III is three-coordinate and the other fourcoordinate; the conformation of the metallacyclic rings may vary. Mode **D** is that in which a binuclear complex III is both chelating and bridging, but in this instance implicating both of the four-coordinate nitrogen atoms. Type E has been realized in one example $[Ge{C(C(Me)N(C_6H_3^iPr_2-2,6))_2}Cl_3]^{52}$ an analogue of the derived conjugate acid [H{N(R)C- $(Ph)_{2}C_{2}CH_{2}$ is known.¹⁸ Thus, in principle, the monoanionic ligand III, at present almost invariably *N*,*N*- or *N*-centered (see **I**), has recently been found in a C-centered environment in the above germanium(IV) chloride.⁵² Strictly **F** is not directly relevant; it represents an M–(**III**-H) fragment, and bis(imine)metal complexes are increasingly of interest as olefin polymerization catalysts; an example is shown in 2 $(\mathbf{R}^1 = \mathbf{C}_6 \mathbf{H}_3^i \mathbf{P} \mathbf{r}_2 \cdot \mathbf{2}, \mathbf{6})$.²⁵ Mode **G** is a variant of **D**, both being rare. Type **H** differs from **C** in that the bridging ligand III has both of the three-coordinate nitrogen atoms functioning as terminal ligands to the two metal atoms. Finally, **J** represents a tautomer of **A** or **B**. In the following section, selected examples are chosen to illustrate each mode A-J.

Mononuclear β -diketiminatometal complexes having a tetrahedral or distorted tetrahedral metal environment generally adopt the bonding mode **A**. Examples based on the ligand [{N(R)C(Ph)}₂CH]⁻ (= L) include [LiL(thf)₂],⁴⁵ [CoL₂],^{22,24} and [MgL₂].⁵³ Mode **A** is also found in (i) most β -diketiminatometal(II) square planar complexes, as in [CoL'₂], L' = [{N(H)C-(Ph)}₂CH];^{22,24} (ii) heteroleptic tetravalent metal complexes, if the substituents R¹ on the nitrogen atoms are hydrogen, as in [SnL'(Cl)Me₂];¹⁸ and (iii) the β -diketiminatotin(II) chlorides [SnL''Cl]^{22,24} and [Sn{N(H)C(Ph)C(H)C('Bu)N(H)}Cl]²⁴ [L'' = N(R)C-(Ph)C(L)C('Bu)N(PL) For a complexes of metals having

(Ph)C(H)C(^tBu)NR]. For complexes of metals having low-lying formally vacant d orbitals of appropriate symmetry, there is the possibility of the β -diketiminato ligand participating not only in σ - but also in π -bonding, the anionic ligand thus being variously a 4- or 6-electron donor; the latter may be significant particularly for late transition metal complexes.

To discuss the bonding in the complex [Cu{(N(C₆H₃-ⁱPr₂-2,6)C(Me))₂CH}(SCPh₃)] (see section 4.4), the electronic structure of the planar, conjugated β diketiminato ligand core **A**, modeled as planar C₃N₂H₅, was probed using Amsterdam Density Functional Theory Calculations.¹⁰³ (As the aromatic rings are orthogonal to the C₃N₂Cu plane they are not part of the conjugated π -system.) These yielded the calculated highest energy levels which, with schematic representations, are shown in Figure 1. The HOMO, 2b1, is characterized by out-of-plane p-type orbitals on the two nitrogen atoms and the central carbon (C3) atom. The 5b2, of only slightly lower energy, has

Figure 1.

in-plane, out-of-phase nitrogen-centered orbitals with lobes directed toward the metal; the wave function character is distributed among the out-of-plane orbitals on C3 (37% C_{calcd}) and the terminal N5 (28% N_{calcd} per N). To deeper energy lies the 6a1 orbital that is also able to participate in ligand-metal bonding, although it would be weaker because the energy denominator would be larger. The still deeper binding energy out-of-plane 1a2 and 1b1 orbitals are unlikely to interact significantly with the metal. Thus, the majority of the bonding occurs through the in-plane orbitals 5b2 and 6a1, which form σ -bonds to the metal, implying that the ligand functions as a 4-electron donor (see also ref 81). Only if the metalligand metallacycle is strongly boat-shaped (B), as in some of the Ti(IV) and Zr(IV) β -diketiminates (see section 4.3.2), is a 6-electron $2\sigma + \pi$ -bonding description, involving additionally the 2b1 out-of-plane orbital, appropriate, but it is unlikely to be significant for the less puckered Sc complexes (see section 4.3.1).76

The change from **A** to **B** is caused by steric crowding around the metal center; examples include [PdL₂],45 [NdL₂Cl],54 and [ZrL"Cl₃].19 Likewise, the change from a square planar to a tetrahedral late 3d homoleptic M(II) β -diketiminate has a steric origin, as first demonstrated for $[CoL_2]$ and $[CoL'_2]$.²² For the d⁸ [ML₂] complexes, whereas the smaller, paramagnetic, tetrahedral Ni complex adopts mode A, mode **B** was observed for the larger, diamagnetic, centrosymmetric, square planar Pd analogue 1.45 Further illustrations of selected geometric parameters for some of these complexes and an example of mode **C**, [LiL]₂,¹⁸ are shown in Figure 2. Another case of **C** is in $[Li{N(R)C(^tBu)C(H)(\check{C}_5H_4N-2)}]_2$.³⁶ There are only a few examples of mode **D**, as in [LiL{Li(CHR₂)}-(thf)]; selected bond lengths are in Figure 2g.⁵⁵ The crystalline dinuclear barium complex $[Ba_2](N(C_6H_{11}-$

Figure 2. Selected geometric parameters for crystalline (a) $[LiL]_2$, (b) $[ZrL''Cl_3]$, (c) $[SnL(Cl)Me_2]$, (d) $[SnL'(Cl)Me_2]$, (e) $[CoL_2]$, (f) $[CoL'_2]$, (g) $[LiL\{Li(CHR_2)\}(thf)]$, (h) $[H\{N-(R)C(Ph))_2C]_2-CH_2$, and (i) $[Li\{\mu-(N(R)C(Ph))_2C\}]_2CH_2$.

c)C(Me))₃CH}₃(NR₂)] is unusual in that bonding illustrates three different types, **B**, **G**, and **H**, as shown in **2** ($\mathbb{R}^1 = C_6 H_{11}$ -c).⁵⁶ Other examples of type

H include [KL'(thf)₂]₂,⁴⁵ and [Li{ μ -(N(R)C(Ph))₂C}]₂CH₂ (Figure 2i).⁴⁶ Type **I** is represented by two examples, the Sc(III) complex **3**, in which the two scandium atoms are not only in an eight-membered ring but also part of both a penta- and a hexa-atomic metal-lacycle,⁵⁷ and in a germanium compound **4** (see **49** in section 4.7).⁵⁸

Scheme 5

4. Discussion of Specific β-Diketiminatometal Complexes

The following sections concern β -diketiminatometal complexes reported in the literature and include also some unpublished work from the Sussex group. A summary is provided in Table 1.

4.1. Group 1 Metal β -Diketiminates

The first fully characterized crystalline alkali metal β -diketiminate, [Li{(N(R)C(Ph))₂CH}]₂ (= [LiL]₂, Figure 2a), was reported in 1994 ($R = SiMe_3$); it was obtained from LiCHR₂ and PhCN in diethyl ether (eq 3).¹⁸ Reactions of LiCHR₂ and related lithium trimethylsilylmethyls were later described in a wider context and shown to provide a variety of products, depending on the reaction conditions and the absence or presence of a neutral coligand.⁵⁵ This is exemplified by the reactions between LiCHR₂ and PhCN shown in Scheme 5.55 The reaction pathway to the lithium 1-azaallyl and β -diketiminate is shown in Scheme 2; the formation of the lithium 1,3-diaazallyl (an isomer of the β -diketiminate) was attributed to the reaction of the 1-azaallyl $Li\{N(R)C(Ph)C(H)R\}$, functioning as an N-centered nucleophile, with PhCN.

Related β -diketiminates [Li{(N(R¹)C(R))₂CH}],

 $[Li\{N(R^1)C(R)C(H)C(Ph)NR\}(tmen)],$ and $[Li\{(N-(^{t}Bu)C(R))_2CH\}(CN^{t}Bu)(LiCHR_2)]$ ($R^1 = C_6H_3Me_2$ -2,6) were obtained from LiCHR_2 and the appropriate isonitrile $R^1NC.^{39,40}$

Ligands of the type **IV**, $[(2-NC_5H_4)_2CH] (\equiv L^1)$, **5** $(\equiv L^2)$, and **6** $(\equiv L^3)$ have featured in the X-raycharacterized complexes $[LiL^1(thf)_2]$,⁵⁹ $[Li(12\text{-crown-}4)_2][LiL^1_2]$,⁵⁹ $[LiL^2]_2$,^{36,60} and $[LiL^3]_2$.^{36,60} Those based on L¹ were made from HL¹ and LiⁿBu ⁵⁹ and the others from the appropriate lithium 1-azaallyl and benzonitrile.^{36,60}

The vast majority of other lithium β -diketiminates are also conveniently prepared from the appropriate diketimine and LiⁿBu. Such lithiation of H[{N(Ph)C-(H)}₂CH] in the presence of hmpa yielded the unusual crystalline complex **7**.⁶¹ A remarkable lithiation

is that of eq 14; the formation of the crystalline product was interpreted to involve the sequence of Scheme 6.4^{6}

 $[{H(N(R)C(Ph))_2C}_2CH_2] \xrightarrow{Li^nBu, Et_2O} [Li{\mu-(N(R)C(Ph))_2C}]_2CH_2$ (14)

Scheme 7

The compound Li{ $(N(C_6H_3^iPr_2-2,6)C(Me))_2CH$ } (= LiL) has been obtained in two crystalline forms.³⁷ One, a dimer, has a double η^3 -allylic bridge from one aryl ligand acting as π -donor to the adjacent Li⁺ ion. The other, a dodecamer, has been described as having a slipped ladder structure, the asymmetric unit of which consists of a chain of six LiL units associated by interactions of each Li⁺ ion with one or two carbon atoms of the aryl ring of the adjacent LiL moiety.

Lithium β -diketiminates are widely used as ligand transfer reagents by reacting them with various metal chlorides. However, we have found that it is often more practicable (although rarely used) to employ the corresponding sodium or potassium derivative, because the heavier alkali metal chloride coproducts are more readily separated in such reactions than LiCl. The only X-ray-characterized sodium complex is $[NaL(thf)_2]$.⁴⁵ Potassium β -diketiminates have been studied more intensively, as summarized in Scheme 7 (L = $[{N(R)C(Ph)}_2CH], L' = [N(R)C-$ (Ph)C(H)C(Ph)NH], $L'' = [Me_2Si\{NC(Ph)\}_2CH]$). Each of the crystalline compounds shown in square brackets has been structurally defined. In [KL(thf)₂]_n, the β -diketiminate L behaves as a bridging openchain ligand (type **H**),⁴⁵ as also is the case for \hat{L}' in $[KL'(thf)_2]_2$ with the NH nitrogen center as the donor site.^{62a} The tricyclic dinuclear complex has L" functioning as a cyclic bridging ligand.62a Its derived diketimine is a cyclotetramer, each unit joined to the next by a hydrogen bond with the four nitrogen atoms coplanar.62a

The crystalline compound $[K\{(N(C_6H_3^iPr_2-2,6)-C(Me))_2CH\}]$ ·PhMe was obtained from $K(NR_2)$ and $H[\{N(C_6H_3^iPr_2-2,6)C(Me)\}_2CH]$ in toluene;^{62b} it is essentially a monomer, except for a single η^5 -contact (excluding the *ipso*-C) of one of the $C_6H_3^iPr_2-2,6$ substituents to a neighboring K atom.

4.2. Group 2 Metal β -Diketiminates

The compound $[Mg\{(N(Me)C(Me))_2CH\}_2]$ was obtained from MgMe₂ and the β -diketimine.⁶³ Reaction of $[Li\{(N(R)C(Ph))_2CH\}_2]$ with MgBr₂ produced crystalline $[Mg\{(N(R)C(Ph))_2CH\}_2]$.⁵³ Heavier group 2 metal analogues were more readily obtained by the transamination reaction of eq 15.⁶⁴

Treatment of $[Li\{(N(Ar)C(Me))_2CH\}]$ (Ar = C₆H₃-ⁱPr₂-2,6) with MeMgCl in thf yielded [Mg{(N(Ar)C-(Me))_2CH}(Me)(thf)] (**a**), which when heated under vacuum at 150 °C afforded the methyl-bridged dimeric complex [Mg{(N(Ar)C(Me))_2CH}(μ -Me)]₂ (**b**) (eq 16).⁶⁵ Alternatively, the latter was also obtained from

the corresponding β -diketimine and dimethylmagnesium.^{65,66} Likewise, using $\{H(N(Ar)C(^{t}Bu))_{2}CH\}$ (Ar $= C_6 H_3^{i} Pr_2 - 2.6$ and MgMe₂ in thf gave [Mg{(N(Ar)C- $(^{t}Bu)_{2}CH \} (Me)(thf)] (c)$, which under vacuum at 150 °C afforded the mononuclear three-coordinate metal complex $[Mg{(N(Ar)C(^{t}Bu))_2CH}(Me)]$ (d).⁶⁷ This is clearly due to a steric blocking of methyl bridging in (d), as evident by noting the values for $(\mathbf{a}-\mathbf{d})$ of the C_{ipso} -N-C (α) [117.7(4)° **a**, 115.4(3)° **b**, 124.4° av **c**, 125.7(2)° **d**] and C_{ipso} -N-Mg (β) [121.1(3)° **a**, 123.2-(2)° **b**, 117.3° av **c**, 110.4(2)° **d**] angles.^{65–67} (A similar effect has been observed in related Sc compounds, see section 4.3.1.) Similar methods were used to prepare the crystalline allyl analogue which, however, is a hexamer, the allyl group acting as a 1,3bridge; the thf adduct is a monomer.⁶⁸ Črystalline magnesium β -diketiminates derived from the ligand $[{N(C_6H_3^{i}Pr_2-2,6)C(Me)}_2CH] (\equiv L) \text{ include (i) } [MgL (\mu$ -OⁱPr)]₂, which was shown to be an active catalyst for the living polymerization of lactide IX^{33,72} (for a review of various catalysts used for this process, see ref 70); (ii) $[MgL(X)(OEt_2)]$ (X = OⁱPr, O^tB̂u, I);⁶⁹ and (iii) $[MgL(\mu_3-BH_4)(OEt_2)]$ (octahedral Mg).⁶⁹ The compound MgL(Cl)(thf) behaved as a ligand transfer agent when treated with FeCl₂(thf)_{1.5} (see Scheme 16).^{29a} Treatment of dibenzylmagnesium with the appropriate tetracyclic diamine yielded the crystalline complex 8.71

To date the sole, crystallographically characterized β -diketiminate of the two heaviest natural group 2 metals is the dinuclear complex **2** (see section 3) obtained from [Ba(NR₂)₂(thf)₂] (R = SiMe₃) and H{N-(R¹)C(Me)}₂CH (3 equiv).⁵⁶

The crystalline compound [MgL(O^tBu)(thf)], obtained from LiL and MeMgCl(thf), was an active catalyst for the ring-opening polymerization of *L*- or *rac*-lactide in CH₂Cl₂;⁷² for a further discussion, using zinc catalysts, see section 4.5.

4.3. Early Transition Metal β -Diketiminates

4.3.1. Scandium β -Diketiminates

Two different approaches have been reported for the synthesis of scandium β -diketiminates: (i) the insertion of a nitrile into a scandium–1-azaallyl or a scandium–alkyl bond and (ii) the simple ligand transfer between the appropriate lithium β -diketiminate and scandium chloride. Procedure i was established for [ScCp*₂{(N(H)C(C₆H₄OMe-4))₂CH}]; the proposed pathway is shown in Scheme 8 (R' = C₆H₄-OMe-4).⁷³

Examples of both neutral and zwitterionic β -diketiminatoscandium complexes have been prepared, as summarized in Schemes 9 and 10 and eqs 17 and

18.74-76 Several of these compounds have been iso-

Scheme 8

Scheme 9

Scheme 10

lated as base-free four-coordinate metal complexes. Steric interactions between $C_6H_3^{i}Pr_2$ -2,6 (= R¹) and the Sc-alkyl groups force the scandium in **9** (Scheme 9) to adopt the bonding mode **B**, with the β -diketiminato ligand functioning as a 4-electron donor (see section 3).⁷⁶ Variable-temperature NMR spectroscopy revealed coalescence behavior for these, consistent with equilibration of two such equivalent out-of-plane structures via a $C_{2\nu}$ symmetric transition state of mode **A** (for **A** and **B**, see section 3); kinetic parameters for these fluxions were obtained.⁷⁶ The four-coordinate Sc dialkyls were somewhat thermally unstable in benzene solution, due to the cyclometalation of eq 17; these products (not included in Table 1) were identified spectroscopically.⁷⁶

Treatment of $[Sc{(N(R^1)C(Me))_2CH}(CH_2Ph)_2]$ (R¹ = $C_6H_3^iPr_2$ -2,6) with tris(pentafluorophenyl)borane gave the zwitterionic product of eq 18.⁷⁴

A number of crystalline tellurium-containing β diketiminatoscandium complexes were obtained as summarized in Scheme 10.⁷⁵

Two crystalline scandium β -diketiminates based on the ligand [{N(CH₂CH₂NEt₂)C(Me)}₂CH]⁻ (\equiv L⁻) were prepared as shown in eq 19.⁵⁷ The distorted

$$\operatorname{SeCl}_{3} \quad \underbrace{\operatorname{LiL}}_{[-\operatorname{LiCl}]} \quad \operatorname{ScLCl}_{2} \quad \frac{2 \operatorname{NaNR}_{2}}{[-2 \operatorname{NaCl}_{2} - \operatorname{HNR}_{2}]} \quad \frac{1}{2} \begin{bmatrix} H \\ \operatorname{MeC} \\ (\operatorname{CH}_{2})_{2} \\ \operatorname{CH}_{2} \\ \operatorname{CH}_{2} \\ \operatorname{NR}_{2} \\ \operatorname{NE}_{2} \\ \operatorname{NR}_{2} \\ \operatorname{NE}_{2} \\ \operatorname{NE}_{2} \\ \operatorname{NE}_{2} \\ 2 \end{bmatrix}$$
(19)

octahedral scandium dichloride (Cl-Sc-Cl', 167°) upon treatment with NaN(SiMe₃)₂ underwent an unusual activation of one of the methyl groups of the ligand L⁻ to give the pentacyclic (μ -CH₂)₂ dinuclear complex **4** (see section 3).

4.3.2. Group 4 Metal β -Diketiminates

The first β -diketiminatotitanium complexes were reported in 1998, partly in the context of their role as procatalysts for the polymerization of olefins.^{77–80} The complex $[Ti{(N(Ph)C(Me))_2CH}Cl_2(thf)_2]$ was prepared from the corresponding lithium β -diketiminate and [TiCl₃(thf)₃].^{77,80} Similarly, using the ligand $[{N(C_6H_2Me_3-2,4,6)C(R')}_2CH]^-$ (R' = Me or 'Bu) or $[\{N(C_6H_3^iPr_2-2,6)C(Me)\}_2CH]^-$ afforded the crystalline Ti(III) dichlorides, which with LiMe gave the appropriate Ti(III) dimethyls which, except for the one derived from the 2,6-diisopropyl-substituted ligand, were thermally labile.78 The crystalline [Ti- $\{(N(C_6H_3^iPr_2-2,6)C(Me))_2CH\}Me_2\}$ with $B(C_6F_5)_3$, unlike the isoleptic V(III) complex, was a low-activity catalyst for the polymerization of C₃H₆ or CH₂=CH-ⁿBu, a process inhibited by toluene.⁷⁸ A DFT computational study on mono(β -diketiminato)M(III) alkyls (M = Ti, V, Cr) has shown that their propensity for undergoing insertion and chain termination by β -H transfer, when used as catalysts for olefin polymerization, was similar to catalysts such as corresponding M(III) complexes including M(NMe₂)₂R or [CrCp*-(X)R'].⁸¹

Using the ligand $[{N(C_6H_4Me-4)C(Me)}_2CH]^- (\equiv L^-)$, the crystalline Ti(IV) complexes $[Ti(L)X_3]$ were obtained from Ti(NMe₂)₄ with HL (for X = NMe₂) or TiCl₄ with LiL (for X = Cl).⁷⁹

The first zirconium β -diketiminate complex of type **IV** was prepared in 1991 by the insertion of acetonitrile into a 1-azaallyl–Zr bond of a cationic Zr(IV) complex (Scheme 11); the anion was $[BF_4]^{-.82}$

Scheme 11

Several X-ray-characterized mono-^{19,45} and bis-⁶⁰ β -diketiminatozirconium chlorides, produced by the reactions of eqs 20⁵⁴ [for structure, see Figure 2b,

suggested to be an η^5 -ligand-metal complex¹⁹] (or an analogue⁴⁵) and 21 (or its quinolyl analogue, see **6**)

 $(R' = Ph \text{ or } {}^{t}Bu, R'' = H \text{ or } R)$,^{36,60,83,84} were shown to be active catalysts with MAO for the polymerization of ethylene and, to a lesser extent, propylene.

An alternative approach to the synthesis of β diketiminatozirconium chlorides and dimethylamides was by amine eliminations, as shown for **10–12** in Scheme 12; the complexes **11** and **12**, like **13**, featured η^{5} -($2\sigma + \pi$)-6-electron-bound (bonding mode **B**) ligands (for further discussion, see section 3).⁸⁵ Scheme 12

From the Zr(IV) chlorides **10** and **12**, further complexes were obtained (eqs 22 and 23) ($R^1 = Me$ or CH_2Ph).⁸⁵

Ethylene polymerizations were conducted using the β -diketiminatozirconium complexes of Scheme 12 and eqs 22 and 23 in the presence of MAO.⁸⁶ The mono- β -diketiminates possessed low activity and provided polyethylenes (PEs) with a trimodal, very broad molecular weight distribution. Both the disubstituted complexes **11** and **12** and the cyclopentadienyl-type derivatives of eq 23 behaved as single-site catalysts under the same conditions, with the activity of the latter considerably higher. The dialkylated zirconium complexes afforded PEs with a significantly narrower molecular weight distribution than the corresponding dichlorides. The use of [Ph₃C][B(C₆F₅)₄] and **13** yielded the salt **14** of eq 24 which, with small

amounts of MAO, showed increase in catalytic activity. The $[B(Ar_F)_4]$ analogue of **14** with **13** gave the catalytically inactive $[(ZrCp\{(N(Ph)C(Me))_2CH\}-Me)_2(\mu-Me)][B(Ar_F)_4]$, which with AlMe₃ yielded a compound formulated as $[ZrCp\{(N(Ph)C(Me))_2CH\}-Me)_2(H)$

 $(\mu$ -Me)₂AlMe₂]⁺; the latter with MAO was an active catalyst.

Interesting results on the synthesis and structures of various other five- and six-coordinate Zr(IV) β -diketiminates have been reported using the ligand $[{N(C_6H_4Me-4)C(Me)}_2CH]^- (\equiv L^-).^{79.87}$ The crystal-line complex [ZrL(CH₂Ph)₃], obtained from [Zr(CH₂-Ph)₄] and HL, eliminated toluene when heated, giving the crystalline cyclometalated product of eq 25 (R¹)

= C₆H₄Me-4); the κ^2 -formulation for one of the benzyl ligands in the final product is supported by the short Zr-C_{*ipso*} bond length of 2.584(2) Å [cf. the Zr-CH₂ bond length of 2.302(2) Å].⁸⁷ The bulkier β-diketiminato ligand [{N(C₆H₃ⁱPr₂-2,6)C(Me)}₂CH]⁻ (≡ L'⁻) in the thermally more stable trialkyl [ZrL'Me₃], was obtained from ZrCl₄ and successively LiL' and LiMe.⁸⁷ The crystalline compounds [ZrL'Cl₃(thf)], [ZrL'Cl₃], and [ZrL'₂Cl₂] were fully characterized.⁷⁹

The amine elimination route was also (see Scheme 12) used for the synthesis of $[ZrL(NMe_2)_3]$ and $[ZrL_2(NMe_2)_2]$ from $Zr(NMe_2)_4$ and HL. With $Ti(NMe_2)_4$ only the tris(amido)TiL was accessible.⁷⁹ The amides with the appropriate R'OH gave $[ZrL_2(OR')_2]$ and $[ZrL(OMe)_3]$ (R' = Me, OC_6H_4Me-4 , $OCH_2C_6H_4Me-4$).⁷⁹

The fused pentacyclic crystalline tris(β -diketiminato)zirconium chloride **15** was obtained from the dinuclear potassium precursor (see Scheme 7) as shown in eq 26.^{62a}

4.3.3. Group 5–7 Metal β -Diketiminates

 β -Diketiminatovanadium complexes date from 1998.^{77,78} The complexes [VLCl₂] and [VLCl₂(thf)₂] [L = {N(Ph)C(Me)}₂CH] were prepared from LiL and VCl₃ or [VCl₃(thf)₃], respectively.⁷⁸ Some reactions of the latter are shown in Scheme 13. The [B(Ar_F)₄]⁻

Scheme 13

salt, like the adduct from the neutral dialkyl and $B(C_6F_5)_3$, was a catalyst for ethylene polymerization. $^{79.87}$ Further dichlorides and dialkyls were obtained similarly: $[V\{(N(C_6H_3{}^iPr_2{\text{-}}2,6)C(Me))_2CH\}X_2]$ (X = Cl, Me, "Bu) and $[V\{(N(C_6H_3{}^iPr_2{\text{-}}2,6)C({}^tBu))_2CH\}{\text{-}}Cl_2].^{78}$

The first chromium(III)⁸⁸ (1989) and tungsten(III)⁸⁹ (1993) β -diketiminates were prepared by the insertion methods of Scheme 14 and eq 27.

Scheme 14

The crystalline chromium β -diketiminates, prepared according to Scheme 15 (R¹ = C₆H₃ⁱPr₂-2,6), were shown to be active catalysts (with MAO, AlClEt₂ or AlClMe₂) for ethylene polymerization, yielding high molecular weight PEs.^{30,90}

In contrast to the alkylation reactions of complex **16**, in which the $(\mu$ -Cl)₂ bridges were retained (Scheme 15), treatment of **16** with NaOC(O)R' or Li-

Scheme 15

Scheme 16

 $[M_2{(FeL^2)_2(\mu-N_2)}]$ M = Na, K

 $\{(O(R')C)_2CH\}$ gave the mononuclear crystalline complexes 17 and $18.^{90}$

The first β -iminatomanganese compound was obtained in poor yield by the unusual redox reaction of eq 7.⁴² Orange crystals of [Mn{(N(R)C(Ph))₂CH}₂] were obtained in almost quantitative yield from MnCl₂ and the lithium β -diketiminate.⁹¹ Using MnI₂ and [LiL(OEt₂)] in diethyl ether gave the X-ray-characterized complex [MnL(μ -I)₂Li(OEt₂)], (L = [{N-(C₆H₃ⁱPr₂-2,6)C(Me)}₂CH]).⁶

4.4. Late Transition Metal β -Diketiminates

Complexes considered in this section are those of the group 8–11 metals. In a 1966 review of the stereochemistry of bis(chelate)metal(II) complexes, a short section was devoted to the then available data on bis(β -iminate)s; these were then restricted to the homoleptic M(II) complexes of Co, Ni, and Cu.² The first of these was [Cu{(N(Ph)C(H))₂CH}₂].^{12,13} Others, studied during 1964–1968, were of formula [M-{(N(R¹)C(R'))₂CH}₂] (R¹ = H, Me, Et, CH₂Ph, Ph, C₆H₄Me-3, C₆H₄Me-4; R' = H, Me).^{8a,11–13,16,17,92–94} The interest then was to establish their structures, in most cases by measurements of magnetic moments, ligand field spectra, and isotropic ¹H NMR spectral

shifts. Of such complexes, only those with $R^1 = H$ were judged to have a planar four-coordinate metal environment, the others being tetrahedral (Co) or distorted tetrahedral. The first X-ray structural data were reported for homoleptic complexes derived from a ligand **XI**: the distorted tetrahedral Cu(II) complex $(R'' = CO_2Et, 1969)^{15}$ and the D_2 -symmetric Ni(II) analogue $(R'' = H, 1970).^{14}$

The effect on the metal environment of changing the *N*,*N*-substituents on the nitrogen atoms from hydrogen (square planar) to trimethylsilyl (= R, distorted tetrahedral) was first demonstrated crystallographically in 1995 for the Co(II) complexes [M- $\{(N(R^1)C(Ph))_2CH\}_2$] [see Figure 2e,f]^{22,24} and has subsequently been reinforced by similar data for the Cu(II)^{91,95} and Ni(II) (R¹ = R,⁴⁵ H^{91,95}) analogues. In the spiro tetrahedral metal complexes [M{(N(R)C-(Ph))_2CH}_2], each of the six-membered metallacycles is coplanar (bonding mode **A**) for M = Fe, Co, Ni, or Cu but changes to planar and bonding mode **B** for M = Pd, as shown in **19**.⁴⁵ The dihedral angles between

the two ligand planes in the tetrahedral complexes are 85.8° (Fe), 91,95 90° (Co), 22,24 78.4° (Ni), 45 and 71.7° (Cu); 91,95 this compares with 82.1° in [Ni{(N(Ph)C-(Me))_2CH}_2]^{96} and 84.2° in [Ni{(N(C₆H₄Cl-4)C-(H))_2Ph}_2]. 97 The electronic perturbation due to the transmission of unpaired spin density from a Ni atom into the ligand for a series of homoleptic Ni(II) β -diketiminates has provided a tool for their conformational analysis, 98 by measuring the paramagnetically induced 1 H NMR chemical shifts. 99 Furthermore, if the substituents at C-2 and C-4 of the NCCCN backbone differed, such asymmetric complexes could be chiral and configurationally stable on the NMR time scale. 100

The syntheses of the above homoleptic M(II) complexes were unexceptional (but see eq $5^{9,10}$ and Scheme 4^{44}) and involved the reaction of the β diketimine or its hydrochloride with [NEt₄][MX₄] (X = Cl or Br^{8a}) or M(OAc)₂ in the presence of a base such as NaOMe or aqueous ammonia.^{8a,11-13,92-94} Alternatively, the reaction between [LiL]₂ and anhydrous MCl₂ (L = [{N(R)C(Ph)}₂CH]⁻) or [PdCl₂(cod)] in diethyl ether yielded [M{(N(R)C(Ph))₂CH}₂] (M = Co,^{22,24} Ni,⁴⁵ Cu,^{91,95} Pd⁴⁵). Treatment of [LiL]₂ with hydrated CoSO₄ gave [CoL'₂],^{22,24} and the corresponding Ni and Cu complexes were obtained from the appropriate MCl₂ in the presence of a trace of water $\begin{array}{l} (L' = [\{N(H)C(Ph)\}_2CH]).^{91,95} \mbox{ Other homoleptic } M(II) \\ \beta\mbox{-diiminates reported were } [Co\{N(R^1)C(R'')C(R')C-(R''')NR^1\}_2] \ [R^1 = Ph = R'', \ R' = H = R'''; \ R^1 = C_6H_4X\mbox{-}4 \ (X = Me, \ OMe, \ Br), \ R'' = Ph, \ R' = H = R'''; \ R^1 = C_6H_4B\mbox{-}4 = R'', \ R' = H = R'''] \ and \ close \ Ni(II) \\ and \ Cu(II) \ analogues.^{48b} \end{array}$

The influence of varying the substituent R' at C-2 and C-4 of the ligand $[{N(C_6H_3^{i}Pr_2-2,6)C(R')}_2CH]^ (\equiv [L^1]^-$ for R' = Me, or $[L^2]^-$ for R' = ^tBu) has been demonstrated by the reactions of Scheme 16; the more bulky $[L^2]^-$ ligand gave rise to the crystalline, high-spin, three-coordinate Fe(II) complex **20**, whereas the other two, derived from $[L^1]^-$, were shown to have a high-spin, tetrahedral Fe(II) environment.^{29a}

Complex **20** with sodium naphthalenide yielded the crystalline dinitrogen-bridged complex having a long N–N bond of 1.182(5) Å, which on further reaction with sodium or potassium gave the salts containing the corresponding dianion in which each of the N atoms of the bridging N_2 had short contacts to M (Na or K).^{29b}

The crystalline, trigonal, planar Cu(I) complexes $[CuL^3]_n$ (bridging through the nitro group) and $[CuL^3-(PPh_3)]$ were obtained as shown in eq 28,⁵¹ whereas

$$HL^{3} + [Cu[NCMe)_{4}][PF_{6}] \xrightarrow{Et_{3}N, MeOH} \frac{1}{n} (CuL^{3})_{n} \xrightarrow{PPh_{3}, MeOH} [CuL^{3}(PPh_{3})]$$
(28)

$$\operatorname{FIL}^{4} + \operatorname{CuBr}(\operatorname{SMe}_{2}) \xrightarrow{\operatorname{CH}_{2} = \operatorname{CHR}} [\operatorname{Cu}(\operatorname{L}^{4})(\eta - \operatorname{CH}_{2} = \operatorname{CHR})]$$
(29)

the Cu(I)(L⁴)- η -CH₂=CHR' (R' = H or Ph) complexes arose from the reactions of eq 29, which with O₂ yielded [{CuL⁴(μ -OH)}₂] via a suggested [{CuL⁴(μ -O)}₂] intermediate¹⁰¹ [L³ = [{N(C₆H₂Me₃-2,4,6)C(H)}₂-CNO₂], L⁴ = [{N(C₆H₃Me₂-2,6)C(Me)}₂CH]].

A number of crystalline β -diketiminatocopper(II) thiolates have been reported (Scheme 17, R' = C₆H₃-

Scheme 17

Me₂-2,6) and were regarded as structural models [especially the four-coordinate copper complex **21**; the $SC(Ph)_2CH_2OMe$ analogue was also obtained³²] for a type 1 copper protein active site.^{32,102,103}

A further series of three-coordinate copper(II) complexes was obtained as shown in Scheme 18.¹⁰⁴The phenolates were thermally stable but dioxygensensitive. These results were taken as shedding further light on the possible nature of intermediates Scheme 18

involved in the processing of phenolic species by Cu-(II) sites in biology and catalysis.

The first rhodium β -diketiminate [Rh{(N(Ph)C-(Me))_2CH}(CO)_2][BF_4], obtained from [Rh{(COD)(μ -Cl)}_2] and the β -diketiminium tetrafluoroborate in EtOH, was reported in 1979; it comprised weak dimers, stacked in a columnar fashion, with Rh…Rh contacts of 3.271(3) Å.¹⁰⁵ The complex [Rh{(N(CH-(Me)Ph-R)C(H))_2CH}(COD)] was a catalyst for enantioselective hydrosilylation of prochiral ketones.¹⁰⁶

The bulky $[{N(C_6H_3X_2-2,6)C(Me)}_2CH]^-$ (L⁵, X = Me; L^6 , X = Cl) ligands were effective in stabilizing the robust, crystalline, three-coordinate $14 e^{-1} Rh(I)$ complexes [RhL⁵(COE)],¹⁵⁰ [RhL⁶(COE)] (which has an additional Rh…Cl close contact)¹⁵¹ and [RhL⁵-(NBE)], prepared from LiL⁵ or LiL⁶ and the appropriate Rh(I) precursor; the four-coordinate Rh(I) complexes [RhL⁵(COD)-1,5], [RhL⁵(C₂H₄)₂], [RhL⁶(C₂H₄)₂], and [RhL⁵(COE)(NCMe)] were also obtained.¹⁵¹ Solution NMR and IR spectroscopic data provided evidence for the existence of [RhL⁵(COE)(N₂)], [RhL⁵-(COD-1,4)], $[RhL^{5}(Me_{2}C=CMe_{2})]$, $[RhL^{5}(COE)(H_{2})]$, and $[{RhL⁵(COE)(\mu-H)}_2]$ (COE = cyclooctene, COD = cyclooctadiene, NBE = norbornene).¹⁵¹ In solution, [RhL⁵(COE)] was fluxional (attributed to an allyl/ hydride mechanism), implicating the [RhL⁵-(cyclooctyl)H] isomer, which in the case of the iridium analogue [IrL⁵(cyclooctyl)H] was the preferred product, although with H₂ it yielded the crystalline [IrL⁵-(COE)(H)₂].¹⁵¹ Some ADF calculations were carried out to probe the observed hydrogenation and isomerization. 150,151

β-Diketiminatoplatinum complexes have received little attention. The cationic Pt(IV) complex of eq 6 was reported in 1976.⁴¹ Recently the crystalline, fivecoordinate, but thermally stable, platinum(IV) alkyl [Pt{(N(C₆H₃ⁱPr₂-2,6)C(Me))₂CH}Me₃] was preparedfrom the potassium β-diketiminate and [{PtMe₃(μ-OTf)}₄]; variable-temperature ¹H NMR spectra showed it to be highly fluxional in solution down to 223 K.³¹ It was light-sensitive in solution, but its thermal stability is noteworthy, as five-coordinate Pt-(IV) alkyls are often highly labile intermediates in many reductive eliminations of Pt(IV) complexes.

4.5. Group 12 Metal β -Diketiminates

Early work on β -diiminates of zinc concerned the synthesis (from HL' and ZnCl₂, in the presence of a base) and spectra of the complexes ZnL'₂ (L' = [N(Et)C(H)C(H)C(Me)NEt],¹⁰ [{N(Ph)C(H)}₂CH],¹² and [{N(R¹)C(H)}₂CPh] (R¹ = C₆H₄Cl-4, C₆H₄Me-4)⁹⁴). Revival of interest in zinc β -diketiminates has largely been triggered by the disclosure that some are living single-site catalysts not only for the ring-opening polymerization of lactide (LA)^{33,107,108} (see Scheme 19;³³ for a review of this topic using these and other

Scheme 19

catalysts, see ref 70) but also for the copolymerization of cyclohexene oxide (CHO) and carbon dioxide^{35,109,110} [see Scheme 20, illustrated for a metal alkoxide, such as [Zn(L)OⁱPr].³⁵

The heteroleptic β -diketiminatozinc complexes employed in these catalytic studies were prepared by the methods of Scheme 21, in which the ligand L = [{N(R¹)C(Me)}₂CH] (R¹ = C₆H₃R²₂-2,6 with R² = Me, Et, ⁿPr, ⁱPr; C₆H₃iPrR³-2,6 with R³ = H, Me, Et, ⁿPr; C₆H₃EtⁿPr-2,6; C₆H₂Me₃-2,4,6) or [{N(C₆H₃ⁱPr₂-2,6)C(H)}₂CH].^{33,35} Representative examples were X-ray-characterized (see Table 1). Similar experiments yielded the complexes [Zn{(N(C₆H₃ⁱPr₂-2,6)C(Me))₂CH]R'] (R' = Me, Ph, ^tBu(thf)].^{6b}

Some significant observations on LA polymerization to PLA followed. (i) $[Zn{(N(C_6H_3^iPr_2-2,6)C(Me))_2-}$ Scheme 20

 $CH_{\mu-O^{i}Pr}_{2}$ (21) exhibited especially fast rates in CH₂Cl₂ and good control of polydispersity, and there was a linear relationship between the molecular weight of PLA and conversion, with the initiator as the end-group.³³ (ii) The importance of changing the 2,6-dialkylphenyl substituents was demonstrated by showing that **21** and *D*,*L*-LA yielded heterotactic PLA (especially at low temperatures), whereas 2,6-Et₂C₆H₃ or 2,6-ⁿ $Pr_2C_6H_3$ analogues were less selective.³³ (iii) With meso-LA, 21 yielded syndiotactic PLA, but at a lower rate than with D.L-LA.³³ Using the same β -diketiminato ligand as **21**, the corresponding thf adduct of the trimethylsiloxide was also an active catalyst, but less so than the crystallographically characterized isoleptic $[Mg{(N(C_6H_3^iPr_2-2,6)C(Me))_2-}$ CH}(O^tBu)(thf)].⁷²

Active catalysts for the polymerization of CHO and CO_2 were of the formula $[Zn\{(N(C_6H_3^iPr_2-2,6)C(Me))_2-CH\}X]$ (X = OR', OCOR', NR₂, but not with X = Cl, Br, Et), $[Zn\{(N(C_6H_3^iPr-2-Et-6)C(Me))_2CH\}(OMe)]$ (the most active), and $[Zn\{(N(C_6H_3Et_2-2,6)C(Me))_2-CH\}X']$ (X' = OMe, OⁱPr, OAc, NR₂).³⁵ The polymers were atactic and of low polydispersity and contained *trans*-cyclohexane linkages in the main chain, consistent with backside attack of the epoxide during enchainment.^{109,110} Restricted rotation about the *N*-aryl bond appeared to be important. Using an optically active complex **22** gave enantioselective copolymer, with R' = ⁱPr = R'' and R''' = ^tBu the most active.¹⁰⁹

The first examples of crystalline zinc compounds with bridging fluorine and hydrogen atoms were synthesized as represented in Scheme 22 ($R^1 = C_6 H_3$ -Me₂-2.6).¹¹¹

Scheme 22

The crystalline zinc and cadmium heterobimetallic complexes $[ML'(\mu-I)_2Li(OEt_2)]$ (M = Zn, Cd), isoleptic with the Mn(II) complex, were obtained from $[LiL'-(OEt_2)]$ and MI₂, L' = $[{N(C_6H_3^iPr_2-2,6)C(Me)}_2CH];^6$ ZnCl₂ and $[LiL'']_2$ gave the crystalline $[ZnL''(\mu-Cl)]_2$, L'' = $[{N(R)C(Ph)}_2CH].^{112}$

4.6. Group 13 Metal β -Diketiminates

The first simple group 13 metal β -diketiminates reported were boron complexes (1989–1992), prepared either from the β -diketimine and BF₃(OEt₂), for example, to give **23** (eq 30);^{113,114} or by heating a

trialkylborane and a nitrile in an autoclave, for example, the crystalline $[B\{(N(H)C(Me))_2CCN\}Et_2]$ from BEt₃ and EtCN.¹¹⁵ Reaction of **23** with $[Cr(CO)_3-(NCMe)_3]$ gave crystalline $[B\{(N(Me)C(Me))_2CH\}F_2-(Cr(CO)_3)]$ **24**, which has the ligand in bonding mode **B**, in contrast to the **A** in **23**.¹¹³ Some geometrical parameters are compared in Figure 3.¹¹³

Figure 3. Selected geometrical parameters for **23** (a) and **24** (b).

Data on β -diketiminatoboron complexes derived from the ligand [{N(C₆H₄Me-4)C(Me)}₂CH]⁻, are summarized in Scheme 23 (R¹ = C₆H₄Me-4).^{116a}

Predating these publications was a 1968 paper on fluorescent BF_2 complexes of di- and tripyrryl-methenes, using ligands of type **XI**, such as **XII**.^{116b}

More recent studies have involved other boron dipyrromethane conjugates (BDP), including aryl-substituted 4,4'-difluoro-4-bora-3a,4a-diaza-5-indecene (BO-DIPY) dyes as fluorescent probes; examples are **XIII**^{116c} and **XIV**^{116d} (such complexes are not included in Table 1).

The first β -diketiminatoaluminum compound [Al-{(N(Me)C(Me))₂CH}Cl₂] was prepared in 1991 from H[{N(Me)C(Me)}₂CH] and AlCl₃/NEt₃; with BCl₂R' it yielded [B{(N(Me)C(Me))₂CH}R'][AlCl₄] (R' = Cl, Et, Ph).^{128b} One of the latter (R' = Cl) with LiCl yielded [B{(N(Me)C(Me))₂CH}Cl₂].^{128b} The β -diketiminatoaluminum dimethyl **25** and its isostructural gallium complex were reported in 1994, prepared from the appropriate $MClMe_2$ (M = Al, Ga) and $[Li\{(2\text{-}NC_5H_4)_2\text{-}CH\}].^{59}$

The next development, in 1998, related to the synthesis of a series of well-characterized complexes, as summarized in Scheme 24 ($R^1 = C_6H_4Me-4$).¹¹⁷ The

Scheme 24

more hindered, crystalline $[Al\{(N(C_6H_3^iPr_2-2,6)C(Me))_2-CH\}Me_2]$ was obtained from AlMe₃ and the β -diketimine.¹¹⁷ The compounds $[Al\{(N(R^1)C(Ph))_2CH\}-R'_2]$ (R¹ = Ph, C₆H₄Cl-4; R' = Me, Et) were prepared from PhC(O)N(R')H and AlMe₃ or AlEt₃.⁴³

Scheme 25

Significant interest in this area was sparked by the disclosure that certain neutral and cationic N,N-(chelate)aluminum alkyls were catalysts or procatalysts for the polymerization of olefins. The chelates have included β -diketiminates;^{118,153} their preparation is summarized in Scheme 25 (R' = C₆H₃ⁱPr₂-2,6). Complexes **27** and **28** were structurally characterized. The former crystallizes as an ion pair in which the [B(C₆F₅)₄]⁻ anion binds weakly to the Al atom of the cation through an *m*-fluorine, whereas the latter contains two cations and two anions that crystallize as {[Al{(N(C₆H₃ⁱPr₂-2,6)C(Me))₂CH}(Me)]₂[B(C₆F₅)₃-Me]}⁺ and [B(C₆F₅)₃Me]⁻.

Treatment of salt **26** with C_2H_4 gave the salt containing the cation **29**, which with MeC=CMe yielded C_2H_4 and the analogue in which the CH_2 - CH_2 moiety was replaced by C(Me)=C(Me).¹¹⁸

Results related to those of Scheme 25 were reported by our group, using the ligands [N(R)C(R')C(H)C-(R'')NR]⁻ [R' = R'' = Ph, C₆H₄Me-4, C₆H₄OMe-4; R' = Ph; and R'' = C₆H₄Me-4, ^tBu, 1-adamantyl (Ad); R' = C₆H₄Me-4, R'' = ^tBu].^{46,119,120} The syntheses of selected crystalline examples are shown in Scheme 26^{120} and eq 31 (R' = C₆H₄Me-4);⁴⁶ the neutral

Scheme 26

precursors were obtained from AlMe₃ and the appropriate β -diketimine. The salts **30** and **31**, which were separated ion pairs, were the first such species to be structurally authenticated;¹²⁰ the Al atom is in a distorted monopyramidal environment, and the Al–N bond lengths are slightly longer and the N–Al–N' bond angles slightly wider than in the neutral precursor.¹²⁰ Another dimethylaluminum β -diiminate, from the corresponding diimine and AlMe₃, was [Al{(N(PPh₂)C(H))₂CH}Me₂].⁴⁹

A crystalline β -diketiminato(1-azaallyl)aluminum methyl was prepared by the reaction of eq 32.⁴⁶ An

ansa-CH₂-bridged, crystalline (mode **B**), dinuclear complex was obtained, as shown in Scheme 27;⁴⁶ it

Scheme 27

is noteworthy that the isoleptic lithium (Figure 2i) and aluminum compounds have different structures.

A number of interesting aluminum β -diketiminates derived from the ligands [{N(R¹)C(Me)}₂CH]⁻ (= L^{R1-}; R¹ = Me, ⁱPr, Ph), including the X-raycharacterized compounds **32**,^{121,122b} **33**,^{122a,b} and **34**,^{122b,123} were obtained as shown in Scheme 28; the

Scheme 28

N,*N*-diisopropyl (X-ray) and -diphenyl analogues of **32** were also described.¹²¹ The homoleptic complex **33** is a rare tris(β -diketiminato)metal complex (but see also **15** and Scheme 37).

Using the bulkier ligand [{N(C₆H₃ⁱPr₂-2,6)C(Me)}₂-CH]⁻ (\equiv L⁻), the derived β -diketiminato dihydride¹²⁴ and dimethyl¹¹⁷ were precursors for further interesting complexes, the majority of which have been crystallographically authenticated, as summarized in Schemes 29 and 30. These data provide further examples of the role of a bulky β -diketiminato spectator ligand to stabilize unusual compounds, in this instance the aluminum(I) complex **35**,^{26,125} the aluminum imide **36**,^{125,126} the heterocycle **37**,¹²⁷ and the selenols **38** and **39**.¹²⁴

Employing the same ligand L⁻, the three crystalline β -diketiminatometal dichlorides were also (for Al and Ga, see ref 128a) prepared from [LiL(OEt₂)] and AlCl₃, GaCl₃, and InCl₃, respectively, whereas using "GaI" yielded GaLI₂.¹²⁹ The similarly crystalline [GaLMe₂] and [InLMe₂] were obtained from HL

with GaMe₃ and InLCl₂ with MeMgBr, respectively.¹²⁹ However, with the ether-free LiL and "GaI", the product was the gallium(I) analogue **40**²⁷ of **35**, as shown, with further interesting reactions of **40** with N₂O,¹³⁰ S₈,¹³⁰ and trimethylsilyl azide,¹³¹ in Scheme 31. Each of the crystalline products, except the gallium sulfide, was structurally established. Compound **41** is a unique dimeric gallium oxide,¹³⁰ and **41** and **42** are a structurally isomeric pair.

4.7 Group 14 Metal β -Diketiminates and a Phosphorus Analogue

The first group 14 metal β -diketiminates [Sn-{(N(R)C(Ph))₂CH}Cl(Me)₂] (Figure 2c; mode **B**) and [Sn{(N(H)C(Ph))₂CH}Cl(Me)₂] (Figure 2d; mode **A**) were obtained in 1994, as shown in Scheme 32. The reaction with SnClMe₃ is particularly surprising.¹⁸

Treatment of the appropriate potassium β -diketiminate with SnCl₂ or its hydrate yielded the crystalline [Sn{N(R)C(^tBu)C(H)C(Ph)N(R)}Cl],¹³² [Sn-{N(H)C(^tBu)C(H)C(Ph)N(R)}Cl],²⁴ and [Sn{N(H)C-(^tBu)C(H)C(Ph)N(H)}Cl].¹³² The structure of each is

Scheme 31

Scheme 32

consistent with there being a stereochemically active lone pair, for example, **43**.²⁴ These reactions provide

further illustrations that the *N*- and/or *N*-SiMe₃ (\equiv R) groups are not only of steric significance but also can be removable protecting groups.

The crystalline heteroleptic β -diketiminatotin(II) halides SnLX were prepared from SnX₂ and [LiL]₂, and it was noted that the second halide X⁻ was not displaceable by L⁻ (for related observations, see refs 133 and 134), L = [{N(R)C(Ph)}₂CH].^{91,95} This and further reactions of SnLCl are summarized in Scheme 33. X-ray data are available for SnLX' (X' = Cl, Br, NR₂) and **44**. The Sn(IV) compound **44** is particularly noteworthy, being only the third example of an Sn-(IV) complex having a terminal sulfide and the first to have four-coordinate tin; selected geometric parameters are shown in Figure 4.^{91,95} The exchange process between the chloride and the bromide, studied by 2D EXSY ¹¹⁹Sn NMR spectroscopy, showed that they exchanged on the NMR time scale, believed to implicate a μ -Cl- μ -Br dinuclear transition state.⁹¹

Reactions related to those of Scheme 33 and significant further extensions have been reported for

Figure 4. Selected bond lengths (angstroms) (a) and angles (degrees) (b) for 44.

Scheme 33

Scheme 34

germanium(II) β -diketiminates derived from the ligands [{N(R¹)C(Me)}₂CH]⁻ [R¹ = Ph;¹³³ C₆H₂Me₃-2,4,6;¹³⁵ C₆H₃ⁱPr₂-2,6 (Ge,^{28,58,134} Sn^{34,134})], as summarized in Scheme 34 (L = [{N(Ph)C(Me)}₂CH]), eq 33 (L = [{N(C₆H₂Me₃-2,4,6)C(Me)}₂CH])]¹³⁵ and

LiL
$$\xrightarrow{\text{GeCl}_2(1,4-\text{dioxane})}$$
 [MLCl] $\xrightarrow{\text{NaN}_3}$ [ML(N₃)] (33)
[-LiCl] Ge, Sn Ge, Sn

for L = [{N(C₆H₃ⁱPr₂-2,6)C(Me)}₂CH] (Schemes $35^{28,58,134}$ and $36,^{34,134}$ respectively); X-ray data are available for those complexes shown in square brackets. Particularly noteworthy crystalline compounds are the two-coordinate β -diketiminatogermanium(II) cation of salt **45**,²⁸ the germanium(IV) hydride **46**, which can be regarded as a tautomer of a β -diketiminatogermanium(II) compound,⁵⁸ and the compound **47**,¹³⁴ which is an isomer of the unknown (and presumably too sterically hindered) SnL₂. The Sn-(II) isopropoxide **48** was shown to be an initiator for the living ring-opening polymerization of *rac*-lactide to heterotactic-enriched poly(lactide) (for the more active isoleptic zinc complex, see section 4.5).³⁴

Treatment of LiL(OEt₂) with the appropriate tetrachloride GeCl₄ or SnX₄ in diethyl ether afforded

Scheme 35

the metal trihalides [GeLCl₃] (**49**), SnLCl₃, and [SnLX₃] (X = Br, I).⁵² Compound **49** is a thus far a unique example of *C*-bonded metal β -diketiminate (mode **E**); selected bond lengths (Å) are shown in Figure 5 (R¹ = C₆H₃ⁱPr₂-2,6);⁵² these data may be compared with those for the tin(IV) compounds of Figure 2c,d.¹⁸ It may be, in our view, that an alternative interpretation of the X-ray data for compound **49** may be that it is a β -diketiminatogermanium 1,3-

diazaallyl [GeL{N(R^1)=C(Me)NC(Me)=C(H) R^1 }].

Figure 5.

Treatment of $[P\{W(CO)_5\}_2(C_5Me_5)]$ with acetonitrile yielded the β -bis(iminato)phosphorus compound

$[P{N(H)C(C_5Me_5)C(H)C(H)NH} {W(CO)_5}_2].^{136b}$

4.8. Lanthanide and Actinide β -Diketiminates

The first 4f-metal β -diketiminates were reported in 1994/1995, as shown in Schemes 37 (Ln = Sm, Gd; each was X-ray-characterized)^{137,138} and 38^{54,139} and eq 34.¹⁴⁰

Scheme 37

The structures of the crystalline homoleptic Yb(II) β -diketiminate **50** and of two analogues (see Table 1) have been investigated.^{136a} The crystal structures show that in each three of the Yb–N bond distances are slightly shorter than the fourth and the variations in the endocyclic bond lengths, exemplified for [Yb{N(R)C(C₆H₄Me-4)C(H)C(Ad)NR}₂] in Figure 6,

C₆H₃ⁱPr₂-2,6

47 ref. 134

are consistent with the notion that the canonical form [Yb(L){N(R)C(Ad)C(H)C(C₆H₄Me-4)=NR}] makes a contribution. Furthermore, in toluene- d_8 the ¹⁷¹Yb-{¹H} chemical shift at 293 K is at the unexpected high frequency for a tetrahedral Yb(II) complex of δ 2634 for **50** (or 2624 and 2629 for the latter complex)

(cf. ref 139 δ 820 and 830 for $[Yb\{N(R)C(^tBu)C-(H)R\}_2].$

The exceptionally large steric influence of the ligand $[{N(R)C(Ph)}_2CH]^- (\equiv L^-)$ and various *N*,*N*-bis(trimethylsilyl) analogues is further evident by the demonstration that (i) derived homoleptic Ln(III)

Figure 7.

 β -diketiminates are not accessible (eq 35)⁵⁴ and (ii)

attempts to replace a halide from [LnL₂Hal] by a bulky alkyl led to the product of disproportionation (eq 36).⁵⁴ The crystal structures of **51** (Figure 7),⁵⁴ **52**,¹⁴¹ and [CeL'(NR₂)₂] {obtained from [Ce(NR₂)₃] and HL'; L' = [(N(R)C(C_6H_4^{t}Bu-4))_2CH]},¹⁴¹ have been recorded.

Some remarkable, apparently subvalent, crystalline samarium and ytterbium β -diketiminates have been prepared recently and X-ray-characterized: $[Sm_2L_3]$ [L = {N(R)C(Ph)}₂CH],^{136a} [KSmL₂] (53),^{136a} [Yb{LiL(thf)}2] (54),^{136a} [Yb{LiL'(thf)}2],^{136a} and [(YbL)3-(thf)] (55)¹⁴² [L' = {N(R)C(C₆H₄Ph-4)}₂CH]. If each of the L and L' ligands is regarded as bearing a single negative charge (as has been assumed in all of the foregoing discussion in this review), then these complexes represent Sm and Yb in oxidation states $1^{1/2}$, 1, 0, 0, and 1, respectively. However, a more plausible interpretation is that the monoanionic $\hat{\beta}$ -diketiminato ligands L⁻ and L'⁻ have an accessible and hence partially occupied LUMO (e.g., L^{2–}). The syntheses of 53, 54, and 55 are illustrated by eqs 37,^{136a} 38,^{136a} and 39¹⁴² and the structures of crystal-

$$SmI_2 + KL \xrightarrow{Et_2O} [KSmL_2]$$
 (37)

YbCl₃
$$\xrightarrow{1.2 \text{ KL, thf}}$$
 [Yb{LiL(thf)}₂] (38)
2. 2.3 Li 54

$$YbL_2 + Yb(C_{10}H_8)(thf)_x \xrightarrow{thf} [(YbL)_3(thf)] (39)$$

Figure 8.

Figure 9.

line **53**^{136a} and **55**¹⁴² in Figures 8 and 9, respectively. Complex **53** is a centrosymmetric dimer; one of the ligands L of the monomeric binuclear moiety not only binds the Sm and K ions as shown in Figure 8 but also acts as a bridge by virtue of an η^6 -Ph to the K' ion of a second monomeric moiety.

Only two 5f-metal β -diketiminates have been made. The reaction between UCl₄ and [LiL]₂ yielded the crystalline salt **56**, comprising the [{U^{VI}L(NR)(μ -Cl)}₂]²⁺ cation and two dichloro- β -diketiminatouranium(III) 1,3-diazaallyl anions.¹⁴³ Selected geometric parameters of the UL moiety of the cation and anion are shown in parts a and b, respectively, of Figure 10.¹⁴³ By contrast, from ThCl₄ and [LiL]₂, the crystalline complex [ThL₂Cl₂] was obtained.¹⁴⁴

Table 1. β -Diketiminatometal Complexes

complex	characterization	bonding mode	comments	ref
	Group 1			
$[Li{N(R)C(Ph)C(H)C(^tBu)N(R)}]_{2}$	¹ H. ¹³ C. and EA			19
$[Li{(N(R)C(Ph))}CH}]_{2}$	¹ H. ¹³ C. ²⁹ Si. EA.	С	central LiNLi'N' ring	18
	and X-ray		0	
$[Li{(N(R)C(C_6H_4Me-4))_2CH}]_2$	¹ H, ¹³ C, and EA			18
$[Li{(N(R)C(C_6H_4OMe-4))_2CH}]_2$	¹ H, ¹³ C, MS, and EA			119
$[Li{(N(H)C(C_{6}H_{4}OMe-4))_{2}CH}]_{2}$	¹ H, ¹³ C, MS and EA			119
$[Li{(N(C_6H_3Me_2-2,6)C(R))_2CH}]$	¹ H, ¹³ C, and ⁷ Li			39, 40
$[\text{Li}\{\mu - (N(R)C(Ph))_2C\}]_2CH_2$	¹ H, ¹³ C, ⁷ Li, ²⁹ Si, MS,	Н	from CH ₂ [C{C(Ph)NR} ₂ H] ₂	46
	EA, and X-ray			
$[Li{N(R)C(Ph)C(H)(C_5H_4N-2)}]_2$	¹ H, ¹³ C, MS, and EA			36, 60
$[Li{N(R)C(tBu)C(H)(C_5H_4N-2)}]_2$	¹ H, ¹³ C, MS, EA,	С	central LiNLi'N' ring	36
	and X-ray		-	
$[Li{N(R)C(Ph)C(R)(C_5H_4N-2)}]_2$	¹ H, ¹³ C, MS, EA,	С	central LiNLi'N' ring	36, 60
	and X-ray			
$[Li{N(R)C(Ph)C(H)(C_9H_6N-2)}]_2$	¹ H, ¹³ C, MS, and EA			36, 60
$[Li{N(R)C(Ph)C(R)(C_9H_6N-2)}]_2$	¹ H, ¹³ C, MS, and EA			36, 60
$[Li{N(R)C(Ph)C(R)(C_5H_4N-2)}(OEt_2)(NCPh)]$	¹ H, ¹³ C, and X-ray	В		36
$[Li{(N(R)C(Ph))_2CH}(tmen)]$	¹ H, ¹³ C, EA, and X-ray	Α		55
$[Li{(N(R)C(Ph))_2CH}(thf)(NCPh)]$	¹ H and ¹³ C			55
$[Li{(N(R)C(Ph))_2CH}(thf)_2]$	¹ H, ¹³ C, ⁷ Li, and X-ray	Α		55
$[Li{(N(R)C(Ph))_2CH}(NEt_3)_2]$	¹ H and ¹³ C			55
$[Li{[N(C_6H_3Me_2-2,6)C(R)C(H)C(Ph)N(R)]}-$	¹ H, ¹³ C, and ⁷ Li			39, 40
(tmen)]				
$[Li{(2-NC_5H_4)_2CH}(thf)_2]$	¹ H, ¹³ C, ⁷ Li, MS, EA,	Α	from ligand IV	59
	and X-ray	•		50
$[L1{(Z-NC_5H_4)_2CH}((Z-NC_5H_4)_2CH_2)]$	X-ray	A	solvated by free ligand (IV)H	59
$[Li{(N(R)C(H))_2CH}(OP(NMe_2)_3)]_2$	1 H, 13 C, $^{\prime}$ Li, 31 P, IR,	A	dimer with bridging	61
$[I_{i}(N(D)C(Dh)),CU_{i}(OE_{i})(I_{i}CUD_{i})]$	$1 \square 13C 7 \square MS \square A$	D	I CUP, acts as acceptor	20 40
$[LI_{(IN(R)C(FII))_2CII_{(OLt_2)(LICIIR_2)}]$	and X-ray	D	LICITIN ₂ acts as acceptor	39, 40
[Li{(N(R)C(Ph)) ₂ CH}(thf)(LiCHR ₂)]	^{1}H ^{13}C ^{7}Li EA	D	LiCHR ₂ acts as acceptor	39 40
	and X-ray	2		00, 10
[Li(12-crown-4) ₂][Li{(2-NC ₅ H ₄) ₂ CH} ₂]	⁷ Li, CP/MAS, MS,	Α	lithiate anion; ligand IV	59
	and X-ray			
$[Li{(N(^tBu)C(R))_2CH}(CN^tBu)(LiCHR_2)]$	^{1}H , ^{13}C and ^{7}Li ,	D	LiCHR ₂ acts as acceptor	39, 40
	and X-ray			10
$[L1{(N(PPh_2)C(H))_2CH}(thf)_2]$	¹ H and ¹³ C			49
$[Li{(N(C_6H_3)Pr_2-2,6)C(Me))_2CH}(thf)]$	¹ H, ¹³ C, ⁷ Li, and X-ray	A		37, 78
$[Li{(N(C_6H_3)Pr_2-2,6)C(Me))_2CH}(OEt_2)]$	¹ H, ¹³ C, ⁷ Li, and X-ray	A 2		37, 104
$[Li{(N(C_6H_3^{+}Pr_2-2,6)C(Me))_2CH}]_n$	1 H, 13 C, $^{\prime}$ Li, and X-ray	$A + \mu - \kappa^3$	a dodocamor	37
$[I_{i}(N(C_{*}H_{*}^{i}P_{*}, 2_{6})C(M_{0}))_{*}CC])(OE_{*})]$	¹ H EA and X-ray	в	a uouecamer	104
$[Li_1(N(C_6H_3H_2^2, 0)C(We))_2CCI_3(OE(2))]$ $[Li_1(N(C_6H_3H_2^2, 0)C(tBu))_2CH_3(tbf)]$	1H 13C and X-ray			78
$[Li_1(N(C_6\Pi_3\Pi_2^{-2}, 0)C(D_4))_2C\Pi_1(\Pi)]$ [Li_1(N(D)C(C, U, M_0, 2, 6)), Si(D)](thf).]	11, 3C, and X-ray	A	2 cilo β dikatiminata complax	145
$[Li_{(N(R)C(C_{6}I_{3}We_{2}-2,0))_{2}Si(R)_{1}(III)_{3}]$ $[Li_{(N(R)C(C_{6}I_{3}We_{2}-2,0))_{2}Si(R)_{1}(III)_{3}]$	11, -30, -11, and EA	D	$2 \operatorname{cilo} \rho$ directiminate complex	145
$[L1{(IN(K))(C_{6}\Pi_{3}Me_{2}-2,0)}_{2}S1(K)]^{-}$	and FA	D	5-sna-p-diketilililato complex	145
$[L_i \{ (N(R)C(C_eH_2Me_2-2.6))_2Si(R) \}$ -	^{1}H ^{13}C ^{7}Li EA	в	3-sila- <i>B</i> -diketiminato complex	145
$(NCC_{6}H_{3}Me_{2}-2.6)_{2}$	and X-ray	В	o shu p uncerninato complex	110
[Li{(N(SiMe ₂ NMe ₂)C(Ph)) ₂ CH}]	¹ H and ¹³ C			146
$[LiGe(R) \{ C(Ph) = N(R) \}_2]_2$	¹ H. ¹³ C. ⁷ Li. EA.		3-germa- β -diketiminato	145
	and X-ray		complex	
$[Na{(N(R)C(Ph))_2CH}(thf)_2]$	¹ H, ¹³ C, EA, and X-ray	Α		45
$[K{(N(R)C(Ph))_2CH}]_2$	1 H, 13 C, and EA		from PhCN + KCHR ₂ or	18
			$KO^{t}Bu + Li(LL)$	
$[K{(N(C_6H_3^iPr_2-2,6)C(Me))_2CH}]$ ·PhMe	¹ H, IR, EA, and X-ray	В	each monomeric unit has an	62b
			η^3 -C ₆ H ₃ ⁴ Pr ₂ -2,6 contact	
$[K [(N(C, U, iD_{re}, 2, \beta)C(tD_{re})), CU]]$	1H and 13C		to a heighborning K	70
$[\mathbf{K}_{1}(\mathbf{N}(\mathbf{D}) \cap (\mathbf{D}\mathbf{h})) \cap (\mathbf{D}\mathbf{h})]_{2} \cap [\mathbf{K}_{1}(\mathbf{N}(\mathbf{D}) \cap (\mathbf{D}\mathbf{h})) \cap (\mathbf{D}\mathbf{h})]_{2} \cap [\mathbf{M}(\mathbf{D}\mathbf{h})]_{2} \cap (\mathbf{D}\mathbf{h})]_{2} \cap (\mathbf{M}(\mathbf{D}\mathbf{h}))$	11 13C 29S; EA and V nov	ы		10
$[\mathbf{K}_{1}(\mathbf{N}(\mathbf{L})\mathbf{C}(\mathbf{D})_{2}\mathbf{C}(\mathbf{L})\mathbf{C}(\mathbf{D})_{2}\mathbf{I}_{1}(\mathbf{U})_{2}]_{n}$ $[\mathbf{K}_{1}(\mathbf{N}(\mathbf{L})\mathbf{C}(\mathbf{D})\mathbf{C}(\mathbf{L})\mathbf{C}(\mathbf{D})\mathbf{N}(\mathbf{D})_{1}(\mathbf{L})\mathbf{C}(\mathbf{D})_{2}(\mathbf{L})\mathbf{C}(\mathbf{D})$	11, ¹³ C, ²³ Si, EA, and X ray	11 11		4J 690
$[\mathbf{K}_{1}(\mathbf{II}) \subset [\mathbf{FI}] \subset [\mathbf{II}] \subset [\mathbf{FI}] \cap [\mathbf{K}_{1}(\mathbf{II})] $ $[\mathbf{K}_{1}(\mathbf{II}) \subset [\mathbf{Dh}] \subset [\mathbf{II}] \subset [\mathbf{Dh}] \cap [\mathbf{K}_{1}(\mathbf{II})] $	11, ¹³ C, ²³ Si, EA, and X ray	11 11		02a 15
$[\mathbf{K}_{(1)}(\mathbf{H}) \subset [\mathbf{H}] \subset [\mathbf{H}] \subset [\mathbf{H}] \cap [\mathbf{K}_{(1)}(\mathbf{H}) \subset [\mathbf{H}] \cap [\mathbf{K}_{(1)}(\mathbf{H}) \cap [\mathbf{H}] \cap [\mathbf{H}]$	¹ H and ¹³ C	п		40
$[K_{1}(N(H)C(Ph))_{2}CH_{1}(H)_{0.5}]_{n}$	V nov	ы	incoluble in cold the	02a 62a
$[\mathbf{K}\{(\mathbf{N}(\mathbf{\Pi})\cup(\mathbf{\Gamma}\mathbf{H}))_{2}\cup\mathbf{\Pi}\}]\mathbf{H}$	A-ray	п	msoluble in cold thi	020
$[\mathbf{n}_{1}\mathbf{n}\mathbf{S}\mathbf{I}(\mathbf{n}\mathbf{e})_{2}\mathbf{n}\mathbf{C}(\mathbf{P}\mathbf{n})\mathbf{C}(\mathbf{H})\mathbf{C}(\mathbf{P}\mathbf{n})\}(\mathbf{n}\mathbf{f})_{3}]_{2}$	-п, ~с, ~Si, EA and X-ray	п		oza, 140, 147
	Group 2			
$[Mg\{(N(R)C(Ph))_2CH\}_2]$	¹ H, ¹³ C, EA, and X-ray	А	from MgBr ₂ + Li(LL); tetra-	53
			hedral metal center	
$[Mg\{N(R)C(Ph)C(H)C(^{t}Bu)N(R)\}_{2}]$	¹ H, ¹³ C, and EA			53
$[Mg\{(N(C_{6}H_{3}^{i}Pr_{2}\text{-}2,6)C(Me))_{2}CH\}(Me)(thf)]$	¹ H, ¹³ C, EA, and X-ray	В		65
$[Mg\{(N(C_6H_3^{i}Pr_2-2,6)C(Me))_2CH\}(\mu-Me)]_2$	¹ H, ¹³ C, EA, and X-ray	В		65, 66

complex	characterization	bonding mode	comments	ref
$[Mg{(N(C_6H_4^{i}Pr_2-2.6)C(^{t}Bu))_2CH}(Me)(thf)]$	Group 2 (Continued) ¹ H, ¹³ C, EA, and X-ray	В	distorted tetrahedral geometry	67
$[Mg\{(N(C_6H_3^{i}Pr_2-2,6)C(^{i}Bu))_2CH\}(Me)]$	¹ H, ¹³ C, EA, and X-ray	В	around magnesium atom trigonal planar geometry	67
$[Mg_{(N(C_{6}H_{3}^{i}Pr_{2}-2,6)C(^{t}Bu))_{2}CH]$ -	¹ H, EA, and X-ray	В	around Mg atom	68
$(CH_2CH=CH_2)(thf)]$ [Mg{(N(C ₆ H ₃ iPr ₂ -2,6)C(^t Bu)) ₂ CH}(μ -	¹ H, EA, and X-ray	В		68
$[Mg\{(N(C_6H_3^{i}Pr_2-2,6)C(Me))_2CH\}-$	1 H, 13 C, and EA	В		66
$[Mg\{(N(C_6H_3^iPr_2-2,6)C(Me))_2CH\}(^tBu)] \\ [Mg\{(N(C_6H_3^iPr_2-2,6)C(Me))_2CH\}(O^tBu)]$	¹ H, ¹³ C, and EA	A A	review on polymerization of lactide and related	66 70
$[Mg\{(N(C_6H_3{}^iPr_2{}^-2,6)C(Me))_2CH\}(^-O{}^iPr)]_2$	¹ H, ¹³ C, and X-ray	А	cyclic esters catalyst for living polym- orization of lactide	33
$\begin{split} & [Mg\{(N(C_6H_3{}^iPr_2{\mathcal{-}2},6)C(Me))_2CH\}Cl(thf)] \\ & [Mg\{(N(C_6H_3{}^iPr_2{\mathcal{-}2},6)C(Me))_2CH\}(iPr)(OEt_2)] \end{split}$	¹ H ¹ H, ¹³ C, IR, MS, EA,	В		29a 69
$[Mg\{(N(C_6H_3{}^iPr_2{\text{-}}2,6)C(Me))_2CH\}I(OEt_2)]$	and X-ray ¹ H, ¹³ C, IR, MS, EA, and X-ray	В		69
$[Mg\{(N(C_6H_3^{i}Pr_2-2,6)C(Me))_2CH\}(\mu-H)_3(BH)-(OEt_2)]$	¹ H, ¹³ C, IR, MS, EA, and X-ray	В	first µ-H ₃ bridged BH ₄ –Mg complex	69
$[Mg{(N(C_6H_3^{i}Pr_2-2.6)C(Me))_2CH}(O^tBu)(thf)]$ [Mg{(N(Me)C(Me))_2CH}_2]	¹ H and X-ray ¹ H, ¹³ C, MS, and EA	В		72 63
$[Mg(1,2-NC_{6}H_{4}NC(Me)C(H)C(Me)N]_{2}(thf)]$	¹ H, EA, and X-ray	А		71
$[Ca{(N(R)C(Ph))_2CH}_2]$ [Sr{(N(R)C(Ph))_2CH}_2]	¹ H, ¹³ C, and EA ¹ H, ¹³ C, and EA			64 64
$[Ba_{\{(N(C_6H_{11}-c)C(Me))_2CH\}_2]}$ $[Ba_{2}\{(N(C_6H_{11}-c)C(Me))_2CH\}_{3}(NR_2)]$	¹ H, ¹³ C, and EA ¹ H, EA, and X-ray	B, G, H	$\begin{array}{l} bridging \; [-N(C_6H_{11}\text{-}c)C(Me) - \\ C(H)C(Me) = \!$	64 56
$[Sc\{(N(H)C(C_6H_4OMe{-}4))_2CH\}(Cp^*)_2]$	Group 3 ¹ H, ¹³ C, IR, and EA		by insertion of RCN into Sc—Me bond	73
$\begin{split} & [Sc\{(N(C_6H_3^iPr_2-2,6)C(Me))_2CH\}Cl_2(thf)] \\ & [Sc\{(N(C_6H_3^iPr_2-2,6)C(^tBu))_2CH\}Cl_2] \\ & [Sc\{(N(C_6H_3^iPr_2-2,6)C(Me))_2CH\}(Me)_2(thf)] \\ & [Sc\{(N(C_6H_3^iPr_2-2,6)C(Me))_2CH\}(CH_2R)_2] \\ & [Sc\{(N(C_6H_3^iPr_2-2,6)C(^tBu))_2CH\}(CH_2Ph)_2] \\ & [Sc\{(N(C_6H_3^iPr_2-2,6)C(^tBu))_2CH\}(Me)_2] \\ & [Sc\{(N(C_6H_3^iPr_2-2,6)C(^tBu))_2CH\}(Me)_2] \\ & [Sc\{(N(C_6H_3^iPr_2-2,6)C(^tBu))_2CH\}(CH_2Ph)_2] \\ & [Sc\{(N(C_6H_3^iPr_2-2,6)C(^tBu))_2CH\}(CH_2Ph)_2] \\ & [Sc\{(N(C_6H_3^iPr_2-2,6)C(^tBu))_2CH\}(CH_2Ph)_2] \\ & [Sc\{(N(C_6H_3^iPr_2-2,6)C(^tBu))_2CH\}(CH_2^tBu)_2] \\ & [Sc\{(N(C_6H_3^iPr_2-2,6)C(^tBu))_2CH\}(CH_2^tBu)_2] \\ & [Sc\{(N(C_6H_3^iPr_2-2,6)C(^tBu))_2CH\}(CH_2^tBu)_2] \\ & [Sc\{(N(C_6H_3^iPr_2-2,6)C(^tBu))_2CH\}(Me)(CH_2R)] \\ \end{array}$	¹ H, ¹³ C, UV–vis, EA, and X-ray ¹ H, ¹³ C, UV–vis, and EA ¹ H, ¹³ C, UV–vis, and EA ¹ H, ¹³ C, and EA ¹ H and ¹³ C	B B B B B B		74, 76 74, 76 74, 76 74, 76 74, 76 74, 76 76 76 76 76 76 76 76 76 76 76
$ [Sc\{(N(C_6H_3^{i}Pr_2-2,6)C(Me))_2CH\}(CH_2Ph)- \\ (\eta^6-C_6H_5CH_2B(C_6F_5)_3)] $	¹ H, ¹³ C, and X-ray	В	zwitterionic Sc^+/B^-	74
$\begin{split} & [Sc\{(N(C_6H_3^{+}Pr_2-2,6)C(Me))_2CH\}(TeCH_2R)_2] \\ & [Sc\{(N(C_6H_3^{+}Pr_2-2,6)C(^{+}Bu))_2CH\}(TeCH_2R)_2] \\ & [Sc\{(N(C_6H_3^{+}Pr_2-2,6)C(Me))_2CH\}(\mu-Te)]_2 \\ & [Sc\{(N(C_6H_3^{+}Pr_2-2,6)C(^{+}Bu))_2CH\}^- \\ & (TeCH_2R)]_2(\mu-Te) \end{split}$	¹ H, ¹³ C ¹ H, ¹³ C, ¹²⁵ Te, EA, and X-ray ¹ H, ¹³ C, EA, and X-ray ¹ H, ¹³ C, EA, and X-ray	B B B		75 75 75 75
$[Sc{(N(CH_2CH_2NEt_2)C(Me))_2CH}Cl_2]$	¹ H, ¹³ C, ⁴⁵ Sc, MS, EA, and X-ray	В	six-coordinate Sc; Cl's axial	57
$[Sc{(NCH_2CH_2NEt_2)C(Me)C(H)(\mu-CH_2)-N(CH_2CH_2Et_2)}(NR_2)]_2$	¹ H, ¹³ C, ²⁹ Si, ⁴⁵ Sc, MS, EA, and X-ray	B, I	five-coordinate Sc	57
$[Ti\{(N(Ph)C(Me))_2CH\}Cl_2(thf)_2]$	Group 4 1 H, 2 H, μ_{eff} , EA, and X-ray		active procatalyst for ethylene polym- erization and ethylene/a-olefin copolymerization	77, 80
[Ti{(N(C ₆ H ₄ Me-4)C(Me)) ₂ CH}Cl ₃] [Ti{(N(C ₆ H ₄ Me-4)C(Me)) ₂ CH}(NMe ₂) ₃]	¹ H, ¹³ C, and EA ¹ H, ¹³ C, EA, and X-rav	В		78, 79 79
$[Ti\{(N(C_6H_2Me_3-2,4,6)C(Me))_2CH\}Cl_2]$ [Ti\{(N(C_6H_2Me_3-2,4,6)C(Me))_2CH\}(Me)_2]	¹ H, ¹³ C, EA, and X-ray EA and X-ray	Ă A	with $B(C_6F_5)_3$, an active catalyst for ethylene polymerization and ethylene/ α -olefin copolymerization	78 78

complex	characterization	bonding mode	comments	ref
	Group 4 (Continued)			
$\label{eq:constraint} \begin{split} &[Ti\{(N(C_6H_3{}^iPr_2{\mathcal{-}2},6)C(Me))_2CH\}Cl_2] \\ &[Ti\{(N(C_6H_3{}^iPr_2{\mathcal{-}2},6)C(Me))_2CH\}(Me)_2] \end{split}$	X-ray	A	active procatalyst for ethylene polym- erization and ethylene/α-olefin	78 78
$\label{eq:constraint} \begin{split} &[Ti\{(N(C_6H_2Me_3\text{-}2,4,6)C(^tBu))_2CH\}Cl_2]\\ &[Ti\{(N(C_6H_2Me_3\text{-}2,4,6)C(^tBu))_2CH\}(Me)_2] \end{split}$	EA and X-ray	A	copolymerization active procatalyst for ethylene polym- erization and ethylene/α-olefin copolymerization	78 78
[Zr{N(H)C(Me)C(H)(2-NC ₅ H ₃ Me-3)}(Cp) ₂]	$^{1}\mathrm{H}$		coporymentzación	82
$[Zr{N(R)C(Ph)C(H)C(^tBu)N(R)}Cl_3]$	¹ H, ¹³ C, EA, and X-ray	В	procatalyst for olefin	19-21
$[Zr\{\eta^2 - C, N-CH_2[6-Me-pyrid-2-yl]\}Cp_2][BPh_4]$	¹ H, IR		by insertion of MeCN into Zr-(1-azaallyl) bond	82
$\label{eq:constraint} \begin{split} & [Zr\{(N(R)C(Ph))_2CH\}Cl_3] \\ & [Zr\{N(R)C(Ph)C(H)(C_5H_4N\text{-}2)\}_2Cl_2] \end{split}$	¹ H, ¹³ C, EA, and X-ray ¹ H, ¹³ C, and EA	В	ethylene polymerization	45 83, 84
$[Zr\{N(R)C(Ph)C(R)(C_5H_4N-2)\}_2Cl_2]$	¹ H, ¹³ C, MS, and EA		ethylene polymerization	60, 83, 84
$[Zr\{N(R)C({}^tBu)C(R)(C_5H_4N\text{-}2)\}_2Cl_2]$	1 H, 13 C, EA, and X-ray	В	ethylene polymerization procatalyst	60, 83, 84
$[Zr\{N(R)C(Ph)C(H)(C_9H_6N-2)\}_2Cl_2]$	¹ H, ¹³ C, MS, EA, and X-ray		ethylene polymerization procatalyst	60, 83, 84
$[Zr\{N(R)C(Ph)C(R)(C_9H_6N-2)\}_2Cl_2]$	1 H, 13 C, MS, and EA		ethylene polymerization procatalyst	60, 83, 84
$[\mathrm{Zr}\{(\mathrm{N}(\mathrm{Ph})\mathrm{C}(\mathrm{Me}))_2\mathrm{CH}\}(\mathrm{CH}_2\mathrm{Ph})_3]$	¹ H, ¹³ C, MS, and EA		ethylene polymerization catalyst	85, 86
$[Zr{(N(C_6H_4Me-4)C(Me))_2CH}(CH_2Ph)_3]$	¹ H, ¹³ C, IR, EA, and X-ray	В		87
$[\operatorname{Zr}\{(\eta^3-\operatorname{N}(\operatorname{C}_7\operatorname{H}_6))\operatorname{C}(\operatorname{Me})\operatorname{C}(\operatorname{H})\operatorname{C}(\operatorname{Me})\operatorname{N}(\operatorname{C}_6\operatorname{H}_4\operatorname{Me}_{-4})\}$	¹ H, ¹³ C, EA, and X-ray	В	five-coordinate Zr;	87
$4)_{-}(\eta^{-} - C \pi_{2} F \Pi)(\eta^{-} - C \pi_{2} F \Pi)]$ [Zr{(N(C_{e}H_{2} P_{2} - 2.6)C(Me))_{2}CH}(Me)_{2}]	¹ H. ¹³ C. EA. and X-ray	в	cyclometalated	87
$[Zr{(N(Ph)C(Me))_2CH}(NMe_2)_3]$	1 H, 13 C, EA, and X-ray	B		85
$[Zr{(N(C_6H_4CF_3-4)C(Me))_2CH}(NMe_2)_3]$	1 H, 13 C, IR, and EA			85
$[Zr\{(N(Ph)C(Me))_2CH\}Cl_3]$	¹ H, ¹³ C, IR, and EA		ethylene polymerization procatalyst	85, 86
$[Zr\{(N(C_6H_4CF_3-4)C(Me))_2CH\}Cl_3]\cdot NHMe_2$	1 H, 13 C, IR, and EA			85
$[\operatorname{Zr}\{(N(Ph)C(Me))_2CH\}_2(NMe_2)_2]$	¹ H, ¹³ C, IR, and EA	D		85
$[\mathrm{Zr}\{(\mathrm{N}(\mathrm{Pn})\mathrm{C}(\mathrm{Me}))_{2}\mathrm{CH}\}_{2}\mathrm{CI}_{2}]$	¹ H, ¹³ C, IR, EA, and X-ray	В	ethylene polymerization procatalyst	85, 86
$[\mathrm{Zr}\{(\mathrm{N}(\mathrm{Ph})\mathrm{C}(\mathrm{Me}))_{2}\mathrm{CH}\}_{2}(\mathrm{Me})_{2}]$	¹ H, ¹³ C, IR, EA, and X-ray	В	ethylene polymerization procatalyst	85, 86
$[\mathrm{Zr}\{(N(Ph)C(Me))_2CH\}_2(Bn)_2]$	1 H, 13 C, IR, and EA		ethylene polymerization procatalyst	85, 86
$[Zr{(N(Ph)C(Me))_2CH}(\eta^{5}-Cp)Cl_2]$	1 H, 13 C, IR, and EA		ethylene polymerization procatalyst	85, 86
$[\operatorname{Zr}\{(N(Ph)C(Me))_2CH\}_2(\eta^5-C_9H_7)Cl_2]$ $[\operatorname{Zr}\{(N(C_2H_4CE_{2^{-4}})C(Me))_2CH\}_4(\mu^5-Cp)Cl_2]$	¹ H, ¹³ C, IR, EA, and X-ray 1 H 13 C IR and EA	В	athylana polymerization	85 85 86
$[21 \{ (N(C_{6}^{-114}C_{1}^{-3}^{-4}) C(N(C_{1}^{-1})^{-2}) C(1) \} (n - C_{1}^{-2}) C(1) \} (n - C_{1}^{-2}) C(1) $	II, C, IK, and EA		procatalyst	03, 00
$[\mathrm{Zr}\{(\mathrm{N}(\mathrm{Ph})\mathrm{C}(\mathrm{Me}))_{2}\mathrm{CH}\}(\eta^{5}\mathrm{-Cp})(\mathrm{Me})_{2}]$	¹ H, ¹³ C, IR, and EA		ethylene polymerization procatalyst	85, 86
$[2r{(N(C_6H_4CF_{3}-4)C(Me))_2CH}{\eta^{5}-Cp)(Me)_2}$ $[2r{(N(Ph)C(Me))_2CH}{\eta^{5}-Cp)(Me)}[B(C_6F_{5})_4]$	¹ H, ¹³ C, IR, and EA ¹ H, ¹³ C, IR, EA, and X-ray		ethylene polymerization	85 86
$[\operatorname{Zr}_{\{(N(C_{6}H_{4}Me^{-4})C(Me))_{2}CH\}}(\eta^{5}-$	EA and X-ray	В	catalyst dicationic dinuclear	86
$[Zr_{(N(C_{e}H_{4}Me-4)C(Me))_{2}CH_{(NMe_{2})_{2}}]$	¹ H. ¹³ C. EA. and X-ray	в	complex	79
$[Zr{(N(C_6H_4Me-4)C(Me))_2CH}Cl_3]$	1 H, 13 C, and EA	2		79
$[Zr{(N(C_6H_4Me-4)C(Me))_2CH}_2Cl_2]$	¹ H, ¹³ C, EA, and X-ray	В		79
$[Zr{(N(C_6H_4Me-4)C(Me))_2CH}_2(OMe)_2]$	¹ H, ¹³ C, and EA			79
$[Zr\{(N(C_6H_4Me-4)C(Me))_2CH\}(OMe)_3]$	^{1}H , ^{13}C , and EA			79 70
$[Zr{(N(C_6H_4Me-4)C(Me))_2CH}_2(UC_6H_4Me-4)_2]$	¹ H, ¹³ C, and EA ¹ H, ¹³ C, and EA			79 70
$(OCH_2C_6H_4^{t}Bu-4)_2]$	Γ , ∇ , all LA			13
$[Zr{(N(C_6H_3^iPr_2-2,6)C(Me))_2CH}(NMe_2)_2Cl]$	¹ H, ¹³ C, EA, and X-ray	А		79
$[Zr\{(N(C_6H_3{}^iPr_2{-}2,6)C(Me))_2CH\}Cl_3(thf)]$	¹ H, ¹³ C, and EA			79
$[Zr{(N(C_6H_3^{i}Pr_2-2,6)C(Me))_2CH}Cl_3]$	¹ H, ¹³ C, EA, and X-ray	Α		79 ~
$[Zr{(N(R^{+})C(Me))_2CH}Cl_3(thf)]$ R ¹ = Me, Ph, CeH ₄ Me-2, CeH ₂ Me ₂ -2, 6	¹ H, ¹³ C, and EA ¹ H, ¹³ C, EA, and X-ray	в	procatalysts for ethylene polymerization	7
$R = C_6 H_3^{i} P r_2^{-2}, 6$	11, 0, 11, unu /1 Tuy	~	$(R^1 = Me, most active)$	

complex	characterization	bonding mode	comments	ref
	Group 4 (Continued)			
$[Zr{(N(H)C(Ph)C(H)C(Ph)N)(Si(Me)_2NC(Ph)-C(H)C(Ph)N)_3SiMe_2}Cl]$	¹ H, ¹³ C, EA, and X-ray		24-membered macrocycle (15)	62a
$[Hf\{N(R)C(Ph)C(H)C(Bu)N(R)\}Cl_3]$ [Hf(N(R)C(Bu)C(H)(C_H(N-2))aCl_3]	¹ H, ¹³ C, and EA ¹ H ¹³ C EA and X-ray	в	processes for ethylene	19 83 84
	II, C, LA, and Aray	Б	polymerization	05, 04
$[V\{(N(Ph)C(Me))_2CH\}Cl_2(thf)_2]$	Group 5 $^1{\rm H},^2{\rm H},\mu_{\rm eff},{\rm EA},{\rm and}$ X-ray		active procatalyst for ethylene polym- erization and ethylene/a-olefin	77, 80
$[V_1(N(C, H, M_{0}, 2.4.6)C(M_{0})), CH)C[1]$			copolymerization	77 70
$\begin{bmatrix} V \{ (N(C_6H_2Me_3-2,4,6)C(Me))_2CH \} CI_2 \end{bmatrix} \\ \begin{bmatrix} V \{ (N(C_6H_2Me_3-2,4,6)C(Me))_2CH \} (Me)_2 \end{bmatrix} \end{bmatrix}$	EA			77, 78 78
$[V{(N(C_6H_3^iPr_2-2.6)C(Me))_2CH}Cl_2]$ $[V{(N(C_6H_3^iPr_2-2.6)C(Me))_2CH}(Me)_2]$	EA EA and X-rav			78 78
$[V\{(N(C_6H_3^{i}Pr_2-2,6)C(Me))_2CH\}(^nBu)_2]$ $[V\{(N(C_6H_3^{i}Pr_2-2,6)C(Me))_2CH\}(^nBu)_2]$	EA and X-ray			78 78
$[V{(N(Ph)C(Me))_2CH}(Me)_2]$	$\mu_{\rm eff}$, EA, and X-ray			78, 80
$[V{(N(Ph)C(Me))_2CH}(Me)(OEt_2)]-$ [B{C ₆ H ₅ (CF ₃) ₂ -3,5} ₄]	$\mu_{\rm eff}$, EA, and X-ray			80
	Group 6			
$[Cr{(N(H)C(Me))_2CH}(Cp^*)Cl]$	¹ H, IR, MS, $\mu_{\rm eff}$, and EA		by insertion of MeCN into Cr–Me bond	88
$[Cr{(N(H)C(Et))_2CH}(Cp^*)Cl]$	¹ H, IR, and EA		by insertion of EtCN into Cr-Ft bond	88
$[Cr{N(H)(C(Me))_2C(Et)N(H)}(Cp^*)Cl]$	¹ H, IR, and EA		by insertion of EtCN into	88
$[Cr\{(N(H)C(Et))_2CMe\}(Cp^*)Cl]$	¹ H, MS, $\mu_{\rm eff}$, and EA		by insertion of EtCN into	88
$[Cr\{(N(Ph)C(Me))_2CH\}Cl_2(thf)_2]$	MS, $\mu_{\rm eff}$, EA, and X-ray	В	procatalyst for ethylene	80, 90
$[Cr\{(N(C_6H_3^iPr_2-2,6)C(Me))_2CH\}Cl(\mu-Cl)]_2$	MS, $\mu_{\rm eff}$, EA, and X-ray	В	polymerization procatalyst for ethylene	30, 90
$[Cr\{(N(C_6H_3^iPr_2-2,6)C(Me))_2CH\}(Me)(\mu-Cl)]_2$	MS, EA, and X-ray	В	polymerization procatalyst for ethylene	30, 90
$[Cr\{(N(C_6H_3{}^iPr_2{-}2,6)C(Me))_2CH\}(\mu{-}Cl)_2(thf)]_2{}^{\star}thf$	MS, $\mu_{\rm eff}$, EA, and X-ray	В	polymerization procatalyst for ethylene	90
$[Cr\{(N(C_6H_3{}^iPr_2{}^-2,6)C(Me))_2CH\}Cl(O_2CMe)(thf)]$	MS, $\mu_{\rm eff}$, EA, and X-ray	В	procatalyst for ethylene	90
$[Cr\{(N(C_6H_3{}^iPr_2{\text{-}}2,6)C(Me))_2CH\}Cl(O_2CPh)(thf)]$	MS, $\mu_{\rm eff}$, and EA		procatalyst for ethylene	90
$[Cr{(N(C_6H_3^{i}Pr_2-2,6)C(Me))_2CH}-Cl({OC(Me)}_{0,CH})]$	MS, $\mu_{\rm eff}$, EA, and X-ray	В	procatalyst for ethylene	90
$[Cr{(N(C_6H_3)^{1}Pr_2-2,6)C(Me))_2CH}-$ C[((OC(Ph))_2CH)]	¹ H, ² H, $\mu_{\rm eff}$, and X-ray	В	procatalyst for ethylene	90
$[W{N(H)C(Me)(C(H))_2N(Et)}(Cp^*)(CO)_2]$	¹ H, ¹³ C, IR, MS, EA, and X-ray	В	by insertion of MeCN into a W-(1-azaallyl) bond	89
$[W{N(H)C(Ph)(C(H))_2N(Et)}(Cp^*)(CO)_2]$	¹ H, ¹³ C, IR, MS, and EA		by insertion of PhCN into a W-(1-azaallyl) bond	89
	Group 7			
$[Mn\{N(H)(C_6H_3Me-2)6-C(H)N(^tBu)\}_2]$	IR, MS, ESR, μ _{eff} , EA, and X-ray	Α	tetrahedral Mn(II)	42
$[Mn\{(N(C_6H_3^iPr_2-2,6)C(Me))_2CH\}(\mu-I)_2Li-(OFt_2)_2]$	IR, MS, EA, and X-ray	В		6a
$[Mn\{(N(R)C(Ph))_2CH\}_2]$	¹ H, MS, μ_{eff} , and EA			91
$[Fe{(N(C_{e}H_{3}^{i}Pr_{2}-2,6)C(^{t}Bu))_{2}CH}C]]$	Group 8 ¹ H. Hoff. and X-ray	А	three-coordinate Fe(II)	29a
$[(Fe{(N(C_6H_3^{i}Pr_2-2,6)C(^{t}Bu))_2CH})(\mu-N_2)]$	resonance Raman,	A	long N–N bond	29b
$M_{2}[(Fe{(N(C_{6}H_{3}^{i}Pr_{2}-2,6)C(^{t}Bu))_{2}CH})_{2}(\mu-N_{2})]$	UV-vis, μ_{eff} , and X-ray	А		29b
(M = Na, K) [Fe{(N(C ₆ H ₃ ⁱ Pr ₂ -2,6)C(Me)) ₂ CH}(μ -Cl) ₂ Li(thf) ₂]	¹ H, μ_{eff} , and X-ray	А		29a
$[Fe{(N(C_6H_3^iPr_2-2,6)C(Me))_2CH}-Cl(u-Cl)]_2[Mg(thf)_4]$	¹ H and X-ray	Α	ClMgCl core	29a
$[Fe{(N(R)C(Ph))_2CH}_2]$	¹ H, MS, $\mu_{\rm eff}$, EA, and X-ray	А	pseudo-tetrahedral	91, 95
$[Co\{(2\text{-NC}_4Me_3)(2'\text{-N'C}_4H_3)CH\}_2]$	Group 9 IR, UV–vis, and EA			93
$[Co{N(Et)(C(H))_2C(Me)N(Et)}_2]$	¹ H, IR, MS, UV–vis, μ_{eff} , and EA			9, 10
$[Co{(2-NC_4HMe_2-3,5)_2CH}_2]$ $[Co{(2-NC_4Me_3)_2CH}_2]$	¹ H, IR, UV–vis, and EA IR, UV–vis, and EA			92, 93 93
$\begin{bmatrix} Co\{(N(Ph)C(H))_2CMe\}_2 \end{bmatrix}$	IR, UV-vis, and EA			13, 16, 17
$[Co_{\{(N(C_{6}H_{4}Me-4)C(H))_{2}CH\}_{2}]}$ [Co{ $(N(C_{6}H_{4}Me-4)C(H))_{2}CH\}_{2}]$	IR, UV-VIS, μ_{eff} , and EA IR, UV-vis, and μ_{eff}			13, 16, 17 148
$[Co{(N(C_6H_4Me-3)C(H))_2CH}_2]$	IR, UV–vis, and $\mu_{\rm eff}$			148

complex	characterization	bonding mode	comments	ref
		moue	comments	101
$[C_{\alpha}(\mathbf{N}(\mathbf{D}\mathbf{h}), C(\mathbf{D}\mathbf{h}), C(\mathbf{U}), \mathbf{N}(\mathbf{D}\mathbf{h}))]$	Group 9 (Continued)			19h
$[Co[N(C \cup Mo A)C(Db)(C(U))]_{2}]$	IR, EA, and μ_{eff}			48D 48b
$[Co{N(C_{6}H_{4}Me^{-4})C(PII)(C(H))_{2}N(C_{6}H_{4}Me^{-4})_{2}]$	IR, EA , and μ_{eff}			400 48b
$[Co[N(C_{6}H_{4}OMe^{-4})C(FH)(C(H))_{2}N(C_{6}H_{4}OMe^{-4})]_{2}]$	IR, EA, and μ_{eff}			400 48b
$[Co{N(Ph)C(C_{e}H_{4}Br-4)(C(H))_{2}N(Ph)}_{2}]$	IR, EA, and μ_{eff}			48b
$[C_0 \{N(C_e H_4 Br-4)C(C_e H_4 Br-4)(C(H))_2\}$	IR, EA, and μ_{eff}			48b
$(C_6H_4Br-4)_2$				
$[Co{(N(Ph)C(H))_2CPh}_2] \cdot 0.5C_6H_6$	UV-vis and EA			94
$[Co\{(N(C_6H_4Cl-4)C(H))_2CPh\}_2]$	UV-vis and EA			94
$[Co\{(N(C_6H_4Me-4)C(H))_2CPh\}_2]$	UV-vis and EA			94
$[Co\{(N(H)C(Me))_2CH\}_2]$	MS, UV–vis, and $\mu_{\rm eff}$			8a
$[Co\{(N(Me)C(Me))_2CH\}_2]$	EA, UV–vis, and μ_{eff}			8a
$[Co\{(N(Et)C(Me))_2CH\}_2]$	EA, UV-vis, and $\mu_{\rm eff}$			8a
$[Co{(N(Ph)C(Me))_2CH}_2]$	EA, UV-vis, and μ_{eff}	•	tatual adual Ca(II)	8a
$\begin{bmatrix} Co\{(N(H)C(Ph))_2CH\}_2 \end{bmatrix}$	MS, EA, and X-ray	A	tetranedral Co(II)	22, 24
$[Co[(N(H)C(PII))_2CH]_2]$ $[Co[(N(CH)C=CH)C(H))_2CH](OCOCMo_1)_2$	MS, EA, and X ray	A	square planar Co(II)	22, 24 11
$2(NH_{2}CH_{2}C=CH)c(H)/2CH}(OCOCMe_{3})^{2}$	IR, EA, and X-ray	A	amines anical	44
			carboxylates <i>cis</i>	
$[Co{N(H)C(^{t}Bu)C(H)C(NMe_2)N(R)}(OR)]$	¹ H, ¹³ C, EA, and X-ray	А	three-coordinate Co(II)	149
$[Co{(N(H)C(NMe_2))_2CH}(\mu - OR)]_2$	¹ H, ¹³ C, EA, and X-ray	А		149
$[Rh{(N(C_6H_3Me_2-2,6)C(Me))_2CH}(1,5-COD)]$	¹ H, ¹³ C, EA, and X-ray			150, 151
$[Rh{(N(C_6H_3Cl_2-2,6)C(Me))_2CH}(1,5-COD)]$	1 H, 13 C, and EA			151
$[Rh{(N(C_6H_3Me_2-2,6)C(Me))_2CH}(C_2H_4)_2]$	¹ H, ¹³ C, EA, and X-ray	А		151
$[Rh{(N(C_6H_3Cl_2-2,6)C(Me))_2CH}(C_2H_4)_2]$	1 H, 13 C, and EA			151
$[Rh{(N(C_6H_3Me_2-2,6)C(Me))_2CH}(COE)]$	¹ H, ¹³ C, EA, and X-ray	В	three-coordinate Rh	150, 151
$[Rh{(N(C_6H_3Me_2-2,6)C(Me))_2CH}(C_2Me_4)_2]$	¹ H and ¹³ C			151
$[Rh{(N(C_6H_3Cl_2-2,6)C(Me))_2CH}(COE)]$	¹ H, ¹³ C, EA, and X-ray	A		151
$[Rh{(N(C_6H_3Me_2-2,6)C(Me))_2CH}(NBE)]$	¹ H, ¹³ C, EA, and X-ray	A	three-coordinate Rh +	151
$[Rb_{1}(N(C_{0}H_{0}M_{0},2,6)C(M_{0}))_{0}CH_{1}(COE)(NCM_{0})]$	¹ H ¹³ C FA and X-ray	Δ	agostic	151
$[Rh_{(N(C_{e}H_{3}Me_{2}-2,6)C(Me))_{2}CH_{(COE)(N_{2})_{3}}]$	^{1}H ^{13}C and IR	A		151
$[Rh{(N(C_{e}H_{2}Me_{2}-2.6)C(Me))_{2}CH}(COL)(12)]$	^{1}H and ^{13}C			151
$[Rh{(N(C_{6}H_{3}Me_{2}-2.6)C(Me))_{2}CH}(COE)(H_{2})]$	1 H and 13 C		dihydrogen complex	151
$[Rh{(N(H)C(Me))_2CH}(CO)_2][BF_4]$	¹ H, ¹³ C, EA, and X-ray	А	<i>J B I</i>	105
$[Rh{(N(CH)(Me)(Ph)-R)C(H))_2CH}(COD)]$	¹ H and EA		catalyst for enantioselective	106
			hydrosilylation	
$[Ir{(N(C_6H_3Me_2-2,6)C(Me))_2CH}(COE)(H)_2]$	¹ H, ¹³ C, and X-ray	A	dihydrido–Ir(III) complex	151
	Group 10			
$[Ni{(N(R)C(Ph))_2CH}_2]$	MS, EA, and X-ray	А	planar Ni(II)	45
$[Ni{(N(H)C(Ph))_2CH}_2]\cdot 2Et_2O$	¹ H, ¹³ C, IR, MS, EA,	Α	an Et ₂ O, H-bonded to	91, 95
	and X-ray		each <i>trans</i> -NH group	
$[Ni{(2-NC_4Me_3)(2'-N'C_4H_3)CH}_2]$	IR, EA, and UV–vis			93
$[Ni{(2-NC_4HMe_2-3,5)_2CH}_2]$	¹ H, IR, μ_{eff} , EA,			92, 93
[Ni; (2, NC, HMa, 2, 5), CH]	and $UV = VIS$	٨	D. commetmy	14
$[Ni\{(2-NC_4) Me_2-3, 5)(2C_11\}_2]$ $[Ni\{(2-NC_4) Me_2-3, 5(CO_2C_2H_2)-4)_2C_1B_2]$	1 H and μ_{sc}	A	D_2 symmetry	14 92
$[Ni{(2-NC_4Me_2)_3CH}_3]$	IR EA and $UV-vis$			93
$[Ni{(N(Ph)C(H))_{2}CPh}_{2}] \cdot 0.5C_{e}H_{e}$	EA and UV-vis			94
$[Ni{(N(C_{e}H_{4}Me-4)C(H))_{2}CPh}_{2}]$	EA and UV-vis			94
$[Ni{(N(C_{6}H_{4}Me-3)C(H))_{2}CH}_{2}]$	IR. $\mu_{\text{off.}}$ and UV-vis			148
$[Ni{(N(C_6H_4Me-4)C(H))_2CH}_2]$	IR, $\mu_{\rm eff}$, and UV-vis			148
$[Ni{N(Ph)C(Ph)(C(H))_2N(Ph)}_2]$	IR, $\mu_{\rm eff}$, and EA			48b
$[Ni{N(C_6H_4Me-4)C(Ph)(C(H))_2}-$	IR, μ_{eff} , and EA			48b
$N(C_6H_4Me-4)_2$				401
$[Ni{N(C_6H_4OMe-4)C(Ph)(C(H))_2}-$ N(C_H_OMe_4)]_]	IR, $\mu_{\rm eff}$, and EA			48b
$N(C_6\Pi_4 \cup Me^{-4})_{2}$ [Ni $(N(C_6\Pi_4 \cup \Pi_5 + A)C(Ph)(C(H))_{2}$	IP $\mu = \text{and } F\Lambda$			48b
$N(C_{6}H_{4}OEt-4)$	IR, μ_{eff} , and EA			400
$[Ni{N(C_6H_4Br-4)C(Ph)(C(H))_2}-$	IR, μ_{eff} , and EA			48b
$N(C_6H_4Br-4)_{2}$,,			
$[Ni{N(Ph)C(C_{6}H_{4}Br-4)(C(H))_{2}N(Ph)}_{2}]$	IR, μ_{eff} , and EA			48b
$[Ni{N(C_6H_4Br-4)C(C_6H_4Br-4)(C(H))_2}]$	IR, μ_{eff} , and EA			48b
$\frac{[N(U_6H_4Br-4)]_2]}{[N!!(N(DL)C(U))C(M_2)]}$				10 10 17
$[\mathrm{NI}((\mathrm{N}(\mathrm{Ph})(\mathrm{H}))_2 \cup \mathrm{NI}(\mathrm{Ph})_2)]$ $[\mathrm{NI}((\mathrm{N}(\mathrm{Ph})(\mathrm{CH}))_2 \cup \mathrm{CH})_1]$	IR, $\cup V = VIS$, and EA			13, 10, 17
$[1 \times 1_1 (1 \times (1 \times 1)) \times (1 \times 1)_2 \cup \Pi_2]$ [Nif(Ni(C_H,C]_A)C(H))_C(Dh)]_1.0 5C_U	IIV, $\cup v = vis$, μ_{eff} , and EA	Δ		12, 13, 10, 17 01 07
$[Ni_{1}(N(Ph)C(H))_{0}C(Ph)]_{0} = 0.5C_{0}H_{0}$	UV vis, EA, and A-ray	л		94, 97 94
$[Ni{(N(C_{c}H_{4}Me-4)C(H))_{2}] = 0.006116$	UV-vis and EA			94
$[Ni{(N(H)C(Me))_2CH}_2]$	¹ H. UV-vis, μ_{off} and EA			8a
$[Ni{(N(Me)C(Me))_2CH}_2]$	UV-vis, μ_{eff} , and EA			8a
$[Ni{(N(Et)C(Me))_2CH}_2]$	UV-vis, μ_{eff} , and EA			8a
$[Ni{(N(Ph)C(Me))_2CH}_2]$	¹ H, ¹³ C, UV–vis, EA,	Α		8a, 11, 96
	and X-ray			
$[Ni{(N(C_6H_4Me-2)C(Me))_2CH}_2]$	¹ H, UV–vis, $\mu_{\rm eff}$, and EA			11

complex	characterization	bonding mode	comments	ref
	Group 10 (Continued)		
$[Ni{(N(C_6H_4Me-3)C(Me))_2CH}_2]$	¹ H, UV–vis, μ_{eff} , and EA			11
$[Ni{(N(C_6H_4Me-4)C(Me))_2CH}_2]$	¹ H, UV–vis, μ_{eff} , and EA			11
$[Ni{(N(C_6H_4C_6H_5-4)C(Me))_2CH}_2]$	¹ H, UV–vis, μ_{eff} , and EA			11
$[Ni{(N(CH_2C_6H_5)C(Me))_2CH}_2]$	¹ H, UV–vis, μ_{eff} , and EA			11
$[Ni{(N(C_6H_3^iPr_2-2,6)C(Me))_2CH_2}Br_2]$	¹ H, ¹³ C, MS, EA, and X-ray	В	β -diketimine acts as base;	25
			active α -olefin polym-	
			erization procatalyst;	
			$H[{N(C_eH_2^iPr_2-2.6)C(M_e)}_2CH]$	
$[Pd_{(N(C_6H_3^iPr_2-2.6)C(M_e))_2C(H)Pd_{(N(C_6H_3^iPr_2-2.6)C(H)Pd_{(N(C_6H_3^iPr$	¹ H. ¹³ C. EA. MS. and X-ray	F	bridging β -diketimine:	25
$(NCMe)_3$ $(NCMe)_2$ $[BF_4]_3$, , , , , , j		active α -olefin polym-	
			erization procatalyst	
$[Pd\{(N(R)C(Ph))_2CH\}_2]$	¹ H, 13 C, EA, MS, and X-ray	В	square planar Pd(II);	45
$[\mathbf{Pd}(\mathbf{N}(\mathbf{P})\mathbf{C}(\mathbf{Ph}))_{*}\mathbf{CH}(m^{3}\mathbf{CH}_{*}\mathbf{CH}\mathbf{CH}\mathbf{CH}_{*})]$	1H 13C EA MS and X-ray	в	liganus <i>ti ans</i> -boat	15
$[Pt_{I}(N(H)C(M_{0}))_{2}CH_{I}(N(H_{0}))_{2$	¹ H and $E\Lambda$	Б	$cationic \mathbf{Pt}(\mathbf{IV})$	45
$Pt{(N(C_0H_0^iPr_0-2.6)C(M_0)_0CH}(M_0)_0]$	^{1}H ^{13}C FA and X-ray	Δ	first stable coordinatively	31
	Ti, C, LA, and A Tuy	11	unsaturated Pt(IV)	01
			five-coordinate complex	
	Group 11			
$[Cu_{2}NC_{4}Me_{2})(2'-N'C_{4}H_{2})CH_{2}]$	IR UV-vis and EA			93
$[Cu{(N(Ph)C(H))_{2}CH}_{2}]$	IR, UV-vis, unit ER, and EA			12, 13, 94
$[Cu{(N(Ph)C(H))_2CMe}_2]$	UV-vis and ESR			94
$[Cu{(N(C_{6}H_{4}Me-3)C(H))_{2}CH}_{2}]$	IR. UV-vis. and μ_{off}			148
$[Cu{(N(Ph)C(H))_2CMe}_2]$	IR. UV-vis. and EA			13
$[Cu{(N(Ph)C(H))_2CH}_2] \cdot 0.5C_6H_6$	UV-vis, ESR, and EA			94
$[Cu{(N(C_6H_4Me-4)C(H))_2CPh]_2]$	UV-vis, ESR, and EA			94
$[Cu{(N(C_6H_4Cl-4)C(H))_2CPh}_2] \cdot 0.5C_6H_6$	UV-vis, ESR, and EA			94
$[Cu{(N(Ph)C(Ph)(C(H))_2N(C_6H_4Me-4))_2]$	IR, μ_{eff} , and EA			48b
$[Cu{(N(C_{6}H_{4}Me-4)C(Ph)(C(H))_{2}-$	IR, μ_{eff} , and EA			48b
$N(C_{6}H_{4}Me-4)\}_{2}]$	ID was and EA			19h
$N(C_6H_4OMe-4)$	IR, μ_{eff} , and EA			400
$[Cu\{(N(C_6H_4OEt-4)C(Ph)(C(H))_2-N(C_6H_4OEt-4))]$	IR, $\mu_{\rm eff}$, and EA			48b
$[Cu_{(N(C_{6}H_{4}Br-4)C(Ph)(C(H))_{2}-$	IR. $\mu_{\rm eff.}$ and EA			48b
$N(C_6H_4Br-4)_2]$,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			
$[Cu{(N(C_6H_4Br-4)C(C_6H_4Br-4)(C(H))_2-N(C_6H_4Br-4)}_2]$	IR, μ_{eff} , and EA			48b
$[Cu{((2-NC_4Me_2-3.5)(CO_2Et-4))_2CH}_2]$	EA and X-ray	А		15
$[Cu{(2-NC_4HMe_2-3,5)_2CH}_2]$	IR, UV-vis, and EA			93
$[Cu{(2-NC_4Me_3)_2CH}_2]$	IR, UV-vis, and EA			93
$[Cu{(N(H)C(Me))_2CH}_2]$	UV–vis, μ_{eff} , and EA			8a
$[Cu\{(N(Me)C(Me))_2CH\}_2]$	UV–vis, $\mu_{\rm eff}$, and EA			8a
$[Cu\{(N(Et)C(Me))_2CH\}_2]$	UV–vis, μ_{eff} , and EA			8a
$[Cu\{(N(Ph)C(Me))_2CH\}_2]$	UV–vis, μ_{eff} , ESR, EA, and X-ray	A		8a, 94, 152
$[Cu\{(N(C_6H_4Me-4)C(H))_2CH\}CI]$	IR, UV-vis, and μ_{eff}	•		148
$[Cu{H(N(C_5H_4N)C(Me))_2CH}_2(NCS)_2]$	UV-vis, ESR, EA, and X-ray	A		102
$[Cu{(N(C_6H_3^{+}Pr_2^{-2}, 6)C(Me))_2CH}CI]$	UV-vis, ESR, EA, and X-ray	В	three coordinate Cr.(II)	102, 103
$[Cu{(N(C_6\Pi_3^{-}\Pi_2^{-2}, 0)C(Me))_2C\Pi}(SCP\Pi_3)]$	Raman, EA, and X-ray		(model for Cu protein	102, 105
	,,		active site)	
$[Cu{(N(C_6H_3^iPr_2-2,6)C(Me))_2CH}-$	UV-vis, ESR, MCD, resonance	В		103
$(SC_6H_3Me_2-2,6)]$	Raman, EA, and X-ray	D		0.0
$[Cu{(N(C_6H_3'Pr_2-2,6)C(Me))_2CH}-{SC(Ph)_2CH_2OMe}]$	UV = VIS, ESR, UV , EA, and X-ray	В		32
$[Cut(N(C_{0}H_{0}^{i}Pr_{0}, 26)C(M_{0}))_{0}CH]_{-}$	UV-vis, ESR, CV, EA, and X-ray	В	structural model for Cu	32
$\frac{\left[\operatorname{CC}(DL) - \operatorname{CL}(DL)\right]}{\left[\operatorname{CC}(DL) - \operatorname{CL}(DL)\right]}$			protein active site	
$\{SU(PII)_2UH_2SIIIE\}\}$	IW via ESD EA and V row	٨		104
$OC_{e}H_{2}Me_{2}=2.6)$	UV = VIS, ESR, EA, and X-ray	A		104
$[Cu{(N(C_6H_3^{i}Pr_2-2,6)C(Me))_2CH}-$	UV-vis, ESR, CV, EA, and X-ray	А		104
$(OC_6H_4OMe-4)]$				
$[Cu{(N(C_6H_3'Pr_2-2,6)C(Me))_2CH}-(OC_6H_4'Bu-4)]$	UV-vis, ESR, Raman, CV, EA, and X-rav	Α		104
$[Cu{(N(C_6H_3^iPr_2-2,6)C(Me))_2CH}]$ -	UV–vis, EÅ, and X-ray	А		104
$(CNC_6H_3Me_2-2,6)]$				
$[Cu{(N(C_6H_3^{1}Pr_2-2,6)C(Me))_2CCl}-(OC_6H_4^{1}Bu-4)]$	UV-vis, ESR, and X-ray	A		104
$[Cu{(N(C_6H_3^i)Pr_9-2.6)C(Me))_9CC]}C]]$	UV–vis. ESR. and X-rav	А		104
$[Cu{(N(C_6H_2Me_3-2,4,6)C(H))_2C(NO_2)}]_{\infty}$	IR, MS, EA, and X-ray	А	polymer chain: Cu–O	51
	5		bridges	

complex	characterization	bonding mode	comments	ref
	Group 11 (Continu	ed)		
$[Cu{(N(C_6H_2Me_3-2,4,6)C(H))_2-C(NO_2)}(PPh_3)]$	¹ H, UV–vis, MS, and EA	eu)		51
$[Cu\{(N(C_6H_3Me_2-2,6)C(Me))_2CH\}(\eta^2-CH_2CH_2)]$	¹ H and X-ray	А		101
$[Cu\{(N(C_6H_3Me_2-2,6)C(Me))_2CH\}(\eta^2-CH_2CHPh)]$	¹ H and X-ray	А		101
$[Cu{(N(C_6H_3Me_2-2,6)C(Me))_2CH}(\mu - OH)]_2$	IR, UV–vis, $\mu_{\rm eff}$, and X-ray	А	possibly via [Cu ^{III} (µ-O)] ₂ complex	101
$[Cu\{(N(R)C(Ph))_2CH\}_2]$	¹ H, MS, μ_{eff} , EA, and X-ray	Α	pseudo-tetrahedral	91, 95
$[Cu{(N(H)C(Ph))_2CH}_2]\cdot 2Et_2O$	¹ H, IR, MS, μ_{eff} , and X-ray	A	square planar: an Et ₂ O molecule H-bonded to each <i>trans</i> -NH group	91, 95
	Group 12			
$[Zn{N(Et)(C(H))_2C(Me)N(Et)}_2]$	¹ H, IR, MS, and UV–vis			9
$[Zn\{(N(Ph)C(H))_2CH\}_2]$	¹ H and EA			12
$[Zn{(N(Ph)C(H))_2CPh}_2] \cdot 0.5C_6H_6$	UV-vis and EA			94
$[ZII_{(N(C_{0}H_{4}Me^{-4})C(H))_{2}CPII_{2}]$ $[Zn_{(N(C_{0}H_{4}C)_{4}C(H))_{0}CPh_{0}]$	UV = VIS and EA			94 94
$[Zn{(N(C_6H_3Et_2-2,6)C(Me))_2CH}(Et)]$	¹ H			107
$[Zn{(N(C_6H_3Et_2-2,6)C(Me))_2CH}(\mu-OMe)]_2$			active catalyst for co-	107, 110
			polymerization of CO ₂	
$[7n!(N(C_0H_0Et_0, 2.6)C(M_0))\circ CH!(u_0A_0)]$	¹ H and X-ray	Δ	and cyclonexene oxide	111
$[2n](n(e_{6}n_{3}2e_{2}-\omega,0)e(n(e))_{2}en_{1}(\mu-OAe)]_{2}$	11 and X-ray	A	polymerization of CO_2	111
			and cyclohexene oxide	
$[Zn{(N(C_6H_3Me_2-2,6)C(Me))_2CH}(\mu-F)]_2$	¹ H, ¹³ F, MS, EA, and X-ray	В	first Zn compound with bridging F atoms	111
$[Zn\{(N(C_6H_3Me_2-2,6)C(Me))_2CH\}(\mu-H)]_2$	¹ H, MS, EA, and X-ray	А	first Zn compound with bridging H atoms	111
$\begin{array}{l} [Zn\{(N(C_6H_3{}^iPr_2{\mbox{-}}2,6)C(Me))_2CH\}{\mbox{-}}\\ (OSiMe_3)(thf)] \end{array}$			review on polymerization of lactide and related	70
$[Zn{(N(C_6H_3^{i}Pr_2-2,6)C(Me))_2CH}(\mu-I)_2-$	¹ H, ¹³ C, MS, EA, and X-ray	В	63(1)3	6a
$L1(OEt_2)]$ [Zn{(N(C ₆ H ₃ Et ₂ -2,6)C(Me)) ₂ CH}(μ -O ⁱ Pr)] ₂	¹ H, ¹³ C, and X-ray	А	catalyst for living polym-	33
$[Zn{(N(C_6H_3^nPr_2-2,6)C(Me))_2CH}(\mu-$	¹ H, ¹³ C, and X-ray	А	catalyst for living polym-	33, 35, 108
$O^{4}Pr)_{2}$ [Zn{(N(C ₆ H ₃ ⁱ Pr ₂ -2,6)C(Me)) ₂ CH}(NR ₂)]	¹ H and X-ray	А	erization of lactide catalyst for alternating	35
	v		copolymerization of cyclohexene oxide and CO ₂	
$[Zn{(N(C_6H_3^iPr-2^nPr-6)C(Me))_2CH}(NR_2)]$	¹ H		5	35
$[Zn\{(N(C_6H_3^nPr_2-2,6)C(Me))_2CH\}(NR_2)]$	¹ H		catalyst for living polym-	33, 35, 108
$[7n!(N(C_0H_0Et_0-2.6)C(M_0))_0CH!(NR_0)]$	¹ H ¹³ C		catalyst for living polym-	33 35
			erization of lactide	00, 00
$[Zn{(N(C_6H_3^{i}Pr_2-2,6)C(Me))_2CH}Et]$	¹ H, ¹³ C	•	inactive	33, 35
$[2n{(N(C_6H_3'PT_2-2,6)C(Me))_2CH}-$ {OC(H)(Me)CO ₂ Me}]	¹ H, ¹³ C, and X-ray	A	erization of lactide	33
$[Zn{(N(C_6H_3Me_3-2,4,6)C(Me))_2CH}(\mu -$			catalyst for living polym-	108
O ⁱ Pr)] ₂			erization of lactide	
$[Zn{(N(C_6H_3^iPr_2-2,6)C(Me))_2CH}(OR)(thf)]$	¹ H		catalyst for living polym-	72
			catalyst for enantioselective	109
$[Zn_{\{(N(C_6H_3R_2^3-2,6)C(R_1))-$			alternating copolym-	
$C(H)C{OC(H)_2[C(H)R^2]N}{NR_2}]$			erization of	
$R^1 = Me, R^2 = Ph-R, R^3 = {}^{i}Pr$			and CO ₂	
$\mathbf{R}^1 = \mathbf{CF}_3, \ \mathbf{R}^2 = \mathbf{Ph} \cdot \mathbf{R}, \ \mathbf{R}^3 = \mathbf{i}\mathbf{Pr}$				
$R^1 = {}^iPr, R^2 = Ph-R, R^3 = {}^iPr$				
$R^{1} = {}^{1}Pr, R^{2} = {}^{1}Pr-S, R^{3} = {}^{1}Pr$				
$R^{*} = {}^{*}Pr, R^{*} = {}^{*}Bu-S, R^{*} = {}^{*}Pr$ $R^{1} = {}^{i}Pr, R^{2} = {}^{t}Bu-S, R^{3} = Ft$	X-ray	Δ	the most active catalyst	
$R^{1} = CF_{3}, R^{2} = {}^{t}Bu \cdot S, R^{3} = {}^{i}Pr$	Aluy	11	the most active cutaryst	
$[Zn{(N(C_6H_3R_{12}-2,6)C(Me))_2CH}_2{\mu-$			catalyst for alternating	35
$OC(O)Me\}_2$	111 and Varian		copolymerization of	
$\begin{array}{l} \mathbf{K}^{1} = \mathbf{E}\mathbf{I} \\ \mathbf{P}^{1} = \mathbf{i}\mathbf{P}\mathbf{r} \end{array}$	¹ H and X-ray	A A	cyclonexene oxide	
$R^{1} = {}^{n}Pr$	¹ H and X-ray	A		
$[Zn{(N(C_6H_3Me_2-2,6)C(Me))_2CH}{\mu}$	¹ H and X-ray	Å		35
$OC(O)Me\}]_2$	~			05
$[Zn{(N(C_6H_3)Pr_2-2,6)C(Me))_2CH}(\mu-X)]_2$	111		inactivo	35
X = 0 X = Br	¹¹ ¹ H and X-ray	А	inactive	
$[Zn{(N(C_6H_3^iPr_2-2,6)C(Me))_2CH}(u-$	¹ H and X-ray	A	mastre	35
OMe)2Na(thf)3]	5			

complex	characterization	bonding mode	comments	ref
complex	Crown 12 (Continued)	moue	connicitts	
$[Zn{(N(C_6H_3Et_2-2.6)C(Me))_2CH}_2(\mu-OH)]_2$	Group 12 (Continued)		inactive	35
$[Zn\{(N(R)C(Ph))_2CH\}_2(\mu-Cl)]_2$	¹ H, ¹³ C, ²⁹ Si, MS, and X-ray	В		112
$[2n\{(N(C_6H_3)^{1}Pr_2-2,6)C(Me))_2CH\}R']$ R' = Me	¹ H, 13 C, IR, MS, and X-ray	Δ		6b
R' = Ph		B		
$\mathbf{R}' = {}^{\mathrm{t}}\mathbf{Bu}(\mathbf{thf})$		В		
$[Cd{(N(C_6H_3!Pr_2-2,6)C(Me))_2CH}(\mu-1)_2-$ L i(OFt_2)_2]	¹ H, IR, MS, EA, and X-ray	В		6a
	Croup 13			
$[B{(N(H)C(Me))_2C(CN)}(Et)_2]$	¹ H, ¹³ C, ¹¹ B, IR, MS, EA, and X-ray	A, B	zwitterionic	115
$[B\{(N(H)C(Me))_2C(CN)\}(Pr)_2]$	¹ H, ¹³ C, ¹¹ B, IR, MS, and EA			115
$[B_{N(H)C(Me)}(C(H))_{N(H)}(Pr)_{0}]$	¹ H, ¹³ C, ¹¹ B, IR, MS, and EA ¹ H, ¹³ C, ¹¹ B, and CC/MS			115 115
$[B{(N(H)C(Me))_2CH}(Pr)_2]$	GC/MS		liquid	115
$[B\{(N(H)C(Et))_2CMe\}(Et)_2]$	¹ H, ¹³ C, ¹¹ B, IR, and MS			115
$[B{(N(H)C(PT))_2CEt}(Et)_2]$ $[B{(N(H)C(Me))_2CH}(1.5-C_8H_{14})]$	1 H, 13 C, 11 B, and MS			115 115
$[B\{N(H)C(Me)(C(H))_2N(H)\}(1,5-C_8H_{14})]$	¹ H, ¹³ C, ¹¹ B, and GC/MS			115
$[B\{(N(Me)C(Me))_2CH\}F_2]$ $[B\{(N(Me)C(Me))_2CH\}F_2]$	¹ H, ¹³ C, ¹⁹ F, ¹¹ B, and X-ray	D		113, 114
$[B_{(N(Me)C(Me))_2CH_3(F)_2(CI(CO)_3)]$ [B{(N(Me)C(Me))_2CH_3(F)_2[BF_4]	1 H, 13 C, 11 B, and EA	D		113
$[B\{(N(Me)C(Me))_2CH_2\}F_2][PF_6]$	X-ray	В		114
$[B\{(N(Me)C(Me))_2CH\}F][BF_4]$ $[B\{(N(Me)C(Me))_2CH]C[e]$	^{1}H , ^{13}C , ^{11}B , and EA			128b
$[B{(N(Me)C(Me))_2CH}CI_2]$	1 H, 13 C, 11 B, and EA			128b
R' = Cl				
R' = Et R' = Ph				
$[B{(N(C_6H_4Me-4)C(Me))_2CH}F_2]$	¹ H, ¹³ C, ¹¹ B, ¹⁹ F, MS, EA, and X-ray	А		116a
$[B\{(C_6H_4Me-4)C(Me)C(H)C(Me)_2-N(C_2H_1Me-4)\}(Me)]$	¹ H, ¹³ C, ¹¹ B, MS, EA, and X-ray	А		116a
$[B{(N(C_6H_4Me-4)C(Me))_2CH}(Me)_2]$	¹ H, ¹³ C, ¹¹ B, MS, EA, and X-ray	А		116a
$[B{N(C_6H_4Me-4)C(Me)C(H)C(Me)_2-}]$	¹ H, ¹³ C, ¹¹ B, MS, EA, and X-ray	А		116a
$[B_{(N(C_6H_4Me-4)C(Me))_2CH_3(nPr)_2]$	¹ H. ¹³ C. ¹¹ B. and EA			116a
$[B{(N(C_6H_4Me-4)C(Me))_2CH}(C_2H_3)_2]$	¹ H, ¹³ C, ¹¹ B, and EA			116a
$[B\{(N(C_6H_4Me-4)C(Me))_2CH\}(C_3H_5)_2]$	1 H, 13 C, 11 B, and EA			116a
$[BMe(C_6F_5)_3]$	$\Pi, C, D, T, and EA$			110a
$[B\{(N(C_6H_4Me-4)C(Me))_2CH\}(Me)(py)]$	¹ H, ¹³ C, ¹¹ B, ¹⁹ F, and EA			116a
$[Al{(N(C_6H_4Me-4)C(Me))_2CH}Cl_2]$	¹ H, ¹³ C, ²⁷ Al, MS, EA, and X-ray	А		117
$[Al\{(N(C_6H_4Me-4)C(Me))_2CH\}(Me)(OTf)]$	¹ H, ¹³ C, ¹⁹ F, IR, MS, EA, and X-ray	В		117
$[AI{(N(C_6H_4Me-4)C(Me))_2CH}(Me)_2]$	¹ H, 13 C, 27 Al, MS, EA, and X-ray	В		117
$[AI{(N(C_{6}H_{4}Me-4)C(Me))_{2}CH}(CHR_{2})CI]$	1 H, 13 C, 27 Al, MS, and EA			117
$[Al\{(N(C_6H_3^iPr_2-2,6)C(Me))_2CH\}(Me)_2]$	¹ H, ¹³ C, ²⁷ Al, MS, EA, and X-ray	В		117, 118
$[AI_{(N(C_{6}H_{3})Pr_{2}-2,6)C(Me))_{2}CH_{(Et)_{2}}]$ $[AI_{(N(C_{6}H_{2})Pr_{2}-2,6)C(Me))_{2}CH_{(Bu)_{2}}]$	¹ H and ¹³ C			118
$[Al\{(N(C_6H_3^{i}Pr_2-2,6)C(Me))_2CH\}(Et)-$	¹ H and ¹³ C			118
$(NMe_2Ph)][B(C_6F_5)_4]$	111 and 13C			110
$[B(C_6F_5)_4]$	-H and -C			110
$[Al\{(N(C_6H_3^{i}Pr_2-2,6)C(Me))_2CH\}(Me)]_{[B(C_2F_2)_1]}$	¹ H, ¹³ C, ¹⁹ F, and X-ray	А	ion pair	153
$[A]{(N(C_6H_3^{i}Pr_2-2,6)C(Me))_2CH}(Me)]_2-$	¹ H, ¹³ C, ¹⁹ F, ¹¹ B, and X-ray	А	"triple ion" + free anion	153
$[BMe(C_6F_5)_3]^+[BMe(C_6F_5)_3]^-$	III 13C EA and V new	р	-	190
$[AI{(N(R)C(Ph))_2CH}(Me)_2]$ [AI{(N(R)C(Ph))_2CH}(Me)(thf)]-	¹ H, 13 C, EA, and X-ray ¹ H, 13 C, 11 B, MS, EA, and X-ray	в В	well-separated ion pair	120
$[BMe(C_6F_5)_3] \cdot 0.5thf$		D		100
$[AI{(N(R)C(Pn))_2CH}(Me)(OEt_2)]^-$ $[B(C_6F_5)_4] \cdot 0.5OEt_2$	H, ¹³ C, ¹¹ B, MS, EA, and X-ray	В	well-separated ion pair	120
$[Al\{(N(R)C(C_6H_4OMe-4))_2CH\}(Me)_2]$	¹ H, ¹³ C, MS, and EA			119
$[AI{(N(R)C(C_6H_4Me-4))_2CH}(Me)_2]$ [AI{N(R)C(Ph)C(H)C(C_6H_4Me-4)N(R)}(Me)_2]	¹ H, ¹³ C, ²⁹ Si, ²⁷ Al, MS, and EA ¹ H, ¹³ C, ²⁹ Si, ²⁷ Al, and MS		from 1-azaallyl-AlMes +	46 46
			PhCN	10
$[Al\{(N(R)C(C_6H_4Me-4)C(H)C(^tBu)N(R)\}(Me)_2]$	¹ H, ¹³ C, ²⁹ Si, ²⁷ Al, MS, and EA			46
$[AI{(N(R)C(C_6H_4Me-4)C(H)C(Bu)N(R)}]$ (Me)(OEt ₂)][BMe(C ₆ F ₅) ₃]	¹ H, ¹⁰ C, ²⁰ SI, ²¹ AI, ¹¹ B, and MS			40
$[Al{N(R)C(Ph)C(H)C(Ad)N(R)}(Me)_2]$	¹ H, ¹³ C, ²⁹ Si, ²⁷ Al, and X-ray	В		46
$[AI\{N(R)C(Pn)C(H)C(Ad)N(R)\}(Et)_2]$ $[A]\{(N(R)C(C_eH_4M_{e-4})C(H)C(^{t}R_{12})N(R))(M_{e})C(H)C(H)C(^{t}R_{12})N(R))(M_{e})C(H)C(H)C(H)C(H)C(H)C(H)C(H)C(H)C(H)C(H$	¹ H, ¹³ C, ²⁹ S1, and ²⁷ Al ¹ H 13 C 29 Si 27 Al and MS			46 46
$[Al\{N(R)C(Ph)C(H)C(Ad)N(R)\}\{N(R)C(Ad)-$	¹ H, ¹³ C, ²⁹ Si, ²⁷ Al, MS, EA,	В	mixed β -diketiminato/	46
$= CH(R) \{ (Me) \}$	and X-ray	R	1-azaallylaluminum methyl	46
[[1 m(1410/2(1 v(10)0(061141410-4))20]20[12]	and X-ray	U		TU

complex	characterization	bonding mode	comments	ref
$[Al{(N(C_6H_3^{i}Pr_2-2,6)C(Me))_2CH}H_2]$ $[Al{(N(C_6H_3^{i}Pr_2-2,6)C(Me))_2CH}(SeH)_2]$	Group 13 (Continued) ¹ H, ¹³ C, IR, MS, and EA ¹ H, ¹³ C, ²⁷ Al, IR, MS, EA.	А	first structurally charac-	124 124
$[A] \{ (N(C_0H_0)^2 P_{0,0}, 2\beta) \cap (M_0) \}_{0} \subset H \} (SeH)]_{0} Se$	and X-ray	Δ	terized M-SeH compound	194
$[A]((N(C L D_{T} - 2, c)C(M_{T})) C(L)]$	and X-ray	D	finat atable monomonia	161
$[AI\{(IN(C_6H_3;PT_2-2,0)C(IMe))_2CH\}]$	TH, ¹³ C, IR, MS, EA, and X-ray	D	Al(I) compound	20, 120
$[Al\{N(C_6H_3^{i}Pr_2-2.6)C(Me)\}_2CH\}(N(R)N_2N(R))]$	¹ H, ¹³ C, ²⁹ Si, MS, EA, and X-ray	В		127
$ \begin{array}{l} [AI\{(N(C_6H_3{}^{1}Pr_2{-}2,6)C(Me))_2CH\}I_2] \\ [AI\{(N(C_6H_3{}^{i}Pr_2{-}2,6)C(Me))_2CH\}CI_2] \\ [AI\{(N(C_6H_3{}^{i}Pr_2{-}2,6)C(Me))_2CH\}{-} \\ (NC_6H_2{}^{i}Pr_3{-}2,4,6)] \end{array} $	¹ H, ¹³ C, MS, EA, and X-ray ¹ H, ¹³ C, EA, and X-ray ¹ H, ¹³ C, ²⁷ Al, MS, and EA	B B	aluminum imide	26, 129 129 125
$[Al\{(N(C_6H_3^iPr_2-2,6)C(Me))_2CH\}(LL')]$ LL' = [C(R)]_2	¹ H, ¹³ C, ²⁷ Al, ²⁹ Si, MS, IR,	А		126
$LL' = [C(Ph)]_{a}$	UV-vis, and X-ray	А		
LL' = C(D)CDh	UV-vis, and X-ray	1 1		
$LL = C(R)CPn$ $LL' = [OC(Ph)_2]_2(OEt_2)$	¹ H, ¹³ C, ²⁷ Al, ²⁹ Si, MS, IR, and X-ray	А		
$LL' = OC(O)[C(R)]_2$ LL' = OC(Ph)_a[C(R)]_a(OFt_a)	¹ H, ¹³ C, ²⁷ Al, and ²⁹ Si ¹ H, ¹³ C, ²⁷ Al, ²⁹ Si, and X-ray	Δ		
$LL' = NC(Ph)[C(R)]_2$	¹ H, ¹³ C, ²⁷ Al, ²⁹ Si, and X-ray	A		
$LL = [NC('BU)]_2$ [Al{(N(C ₆ H ₃ ⁱ Pr ₂ -2,6)C(Me)) ₂ CH}(NR)]	1 H, 13 C, MS, and EA		first aluminum imide	126
$ \begin{array}{l} [Al\{(N(C_6H_3^{i}Pr_2-2,6)C(Me))_2CH\} \\ (NC_6H_3^{i}Pr_2-2,6)] \end{array} $	¹ H, ¹³ C, MS, and EA		aluminum imide	126
$[Al\{(N(Me)C(Me))_2CH\}_3]$	¹ H, ¹³ C, ²⁷ Al, MS, EA, and X-ray	В	rare tris(β-diketimin- ato)metal complex	123
$[Al\{(N(Ph)C(Ph))_2CH\}(Me)_2]$	1 H, 13 C, IR, and EA		from benzanilide + aluminum alkyl	43
$[Al\{(N(Ph)C(Ph))_2C(Me)\}(Et)_2]$	1 H, 13 C, IR ,and EA		from benzanilide + aluminum alkyl	43
$[Al\{(N(C_{6}H_{4}Cl-4)C(Ph))_{2}C(Me)\}(Et)_{2}]$	¹ H, ¹³ C, EA, and X-ray	А	from benzanilide +	43
$[Al\{(N(C_6H_4Cl-4)C(Ph))_2CH\}(Me)_2]$	¹ H, ¹³ C, EA, and X-ray	А	from benzanilide +	43
$[Al\{(N(C_{6}H_{4}Me\text{-}4)C(Ph))_{2}CH\}(Me)_{2}]$	¹ H, ¹³ C, and EA		from benzanilide +	43
$[Al{(N(C_6H_4Me-4)C(Ph))_2C(Me)}(Et)_2]$	¹ H, ¹³ C, ³¹ P, and EA		from benzanilide +	43
$[Al{(N(PPh_2)C(H))_2CH}(Me)_2]$	¹ H, ¹³ C, ³¹ P, and EA		aluminum alkyl	49
$[Al\{(N(Me)C(Me))_2CH\}H_2]$	¹ H, ¹³ C, ²⁷ Al, MS, EA, and X-ray	В	from diketimine + AlH ₃ (NMe ₃)	121
$[Al\{(N(^{i}Pr)C(Me))_{2}CH\}H_{2}]$	¹ H, ¹³ C, ²⁷ Al, MS, EA, and X-ray	В	from diketimine + AlH ₃ (NMe ₃)	121
$[Al\{(N(Ph)C(Me))_2CH\}H_2]$	¹ H, ¹³ C, ²⁷ Al, MS, and EA		from diketimine + AlH ₃ (NMe ₃)	121
$[Al\{(N(Me)C(Me))_2CH\}_2][BPh_4]$	¹ H, ¹³ C, ²⁷ Al, ¹¹ B, EA, and X-ray 1 H, ¹³ C, ²⁷ Al, MS, and EA	А	cationic spirocyclic Al complex	121, 122a,b
$[A1{(N(Me)C(Me))_2CH}_2CI]$	¹ H, ¹³ C, ²⁷ Al, MS, EA, and X-ray	В	cationic sphotyche Ai complex	122b, 128a,b
$[AI{(N(Me)C(Me))_2CH}_2Br]$ [AI{(N(Me)C(Me))_2CH}Cl_2·AlCl_3]	¹ H, ¹³ C, ²⁷ Al, MS, and EA ¹ H, ¹³ C, ²⁷ Al, and EA			122b 128b
$[AI{(N(Et)C(Me))_2CH}CI_2]$ [A]{(N(Pr)C(Me))_2CH}CI_2]	¹ H, ¹³ C, ²⁷ Al, MS, EA, and X-ray ¹ H, ¹³ C, ²⁷ Al, MS, and EA	В		128a 128a
$[M{(2-NC_5H_4)_2CH}(M)_2] (M = Al \text{ or } Ga)$	¹ H, ¹³ C, EA, and X-ray	A	from ligand IV	59
$[Ga\{(N(C_6H_3^{i}Pr_2-2,6)C(Me))_2CH\}]$ [Ga\{(N(C_6H_3^{i}Pr_2-2,6)C(Me))_2CH\}-	¹ H, ¹³ C, IR, UV–vis, EA, and X-ray ¹ H, ¹³ C, MS, UV–vis, EA,	A B	Ga(I) carbene analogue gallium imide	27 125
$(NC_{6}H_{2}^{i}Pr_{3}-2,4,6)]$ [Ga{ $(N(C_{6}H_{3}^{i}Pr_{2}-2,6)C(Me))_{2}CH$ }Cl ₂]	and X-ray ¹ H, ¹³ C, EA, and X-ray	В		129
$\begin{bmatrix} Ga\{(N(C_6H_3^{i}Pr_2-2,6)C(Me))_2CH\}I_2 \end{bmatrix}$ $\begin{bmatrix} Ca\{(N(C_6H_3^{i}Pr_2-2,6)C(Me))_2CH\}I_2 \end{bmatrix}$	¹ H, ¹³ C, EA, and X-ray ¹ H, ¹³ C, EA, and X ray	B B		129
$[Ga{(N(C_{e}H_{9}^{i}P_{7}_{2}, 0)C(M_{e}))_{a}^{i}CH]_{a}^{i}$	¹ H, ¹³ C, EA, and X-ray	B	1-gallatetraazacyclo-	131
$(N(R)N_2N(R))]$			pentane complex	
$[Ga\{(N(C_6H_3^{i}Pr_2-2,6)C(Me))_2CH\}(N_3)(NR_2)]$	¹ H, ¹³ C, EA, and X-ray ¹ H, EA, and X-ray	B	first $(C_2 O)_2$ ring	131 130
$[Ga{(N(Me)C(Me))_2CH}Cl_2]$	¹ H, ¹³ C, ⁷¹ Ga, MS, EA, and X-ray	B	mst (GaO/2 Illig	128a
$[Ga{(N(Et)C(Me))_2CH}Cl_2]$ [Ga{(N(^{1}Pr)C(Me))_3CH}Cl_3]	¹ H, ¹³ C, ⁷¹ Ga, MS, and EA ¹ H, ¹³ C, ⁷¹ Ga, MS, EA, and X-ray	В		128a 128a
$[In{(N(C_6H_3^{i}Pr_2-2,6)C(Me))_2CH}Cl_2]$	¹ H, ¹³ C, EA, and X-ray	B		129
$[In{(N(C_6H_3'Pr_2-2,6)C(Me))_2CH}I_2] [In{(N(C_6H_3'Pr_2-2,6)C(Me))_2CH}(Me)_2]$	¹ H, ¹³ C, EA, and X-ray 1 H, ¹³ C, EA, and X-ray	в В		129 129
$[Tl{(N(C_6H_3Me_2-2,6)C(Me))_2CH}]$	¹ H, ¹³ C, and EA			101

compley	characterization	bonding	comments	rof
complex		moue	comments	101
	Group 14			100
$[Ge{(N(Ph)C(Me))_2CH}C]$	¹ H, ¹³ C, MS, and EA			133
$[Ge{(N(Ph)C(Me))_2CH}]$	¹ H, ¹³ C, MS, and EA			133
$[Ge{(N(Ph)C(Me))_2CH}Cl(1,2-$ O O'C HatBuar3 5)]	^{1}H , ^{13}C , MS, and EA			133
$[C_0 J(N(Ph)C(M_0))_0 CH J(C)]$	1H 13C MS and FA			133
$[Col(N(Ph)C(Mo))_{2}CH_{3}(Ch)S]$	11 , 12 C, MS, and EA			133
$[Col(N(Ph)C(Mo))_{2}CH][BPh_{2}]$	¹ H 13 C MS and EA			133
$[Ce_{1}(N(Ph)C(Me))_{2}CH_{1}(DPh_{4})]$	¹ H 13 C MS and EA			133
$[Ce{(N(Ph)C(Me))_2CH}C(N(P_2))]$	¹ H 13 C IR MS and FA			133
$[Ge{(N(Ph)C(Me))_2CH}C](W(CO)_2)]$	¹ H 13 C IR MS and EA			133
$[Ge{(N(C_6H_2Me_3-2.4.6)C(Me))_2CH}C]]$	¹ H. ¹³ C. IR. EA. and X-ray	В		135
$[Ge{(N(C_6H_2Me_3-2.4.6)C(Me))_2CH}(N_3)]$	¹ H. ¹³ C. ¹⁴ N. IR. EA. and X-ray	В		135
$[Ge{(N(C_6H_3^iPr_2-2,6)C(Me))_2CH}Cl]$	¹ H, MS, EA, and X-ray	В		58, 134
$[Ge{(N(C_6H_3^iPr_2-2,6)C(Me))_2CH}]$ -	¹ H, ¹³ C, ¹¹ B, ¹⁹ F, IR, and X-ray	А		28
$[\{B(C_6F_5)_3\}_2(\mu - OH)]$				
$\left[C_{\alpha} N(C_{\alpha}H_{\alpha}^{i}Pr_{\alpha}, 2\beta)C(M_{\alpha}) = C(H)C(M_{\alpha})\right]$	1H, IR, MS, EA, and X-ray	В	five-coordinate Ge, part of a	52
$= N(C_6H_3^{-1}P_2^{-2}, 6) C_{13}^{-1}$			$C_{\Theta} = C(H) + 971(3) \text{ Å}$	
[Ge{(N(CeHeMee-2 6)C(Me))eCH}C]]	¹ H MS and EA		Ge C(II) 1.571(5) A	58
$[Ge{(N(C_{e}H_{2}^{i}Pr_{2}-2.6)C(Me))_{2}CH}F]$	¹ H. ¹⁹ F. IR. MS. EA. and X-ray	В		58
$[Ge{(N(C_eH_2^{i}Pr_2-2.6)C(Me))_2CH}H(BH_2)]$	¹ H. ¹¹ B. IR. MS. EA. and X-ray	B		58
$[Ge{(N(C_6H_3Me_2-2.6)C(Me))_2CH}F]$	¹ H. ¹⁹ F. MS. and EA	2		58
$[Ge_{(N(C_6H_3Me_2-2.6)C(Me))_2CH_3H(BH_3)]$	¹ H. ¹¹ B. IR. MS. and EA			58
$[Ge{(N(C_6H_3^{i}Pr_2-2.6)C(Me))_2CH}F(NR)]$	¹ H. ¹⁹ F. ²⁹ Si. and MS			58
$[Ge{(N(C_6H_3^iPr_2-2,6)C(Me))_2CH}H]$, , , , - ,			58
	¹ H, ⁷ Li, ¹¹ B, MS, EA, and X-ray		tautomer of a β -diketiminato-	58
$[Ge{N(C_6H_3'Pr_2-2,6)C(Me)C(H)C(=CH_2)N-C(H)D(H)C(=CH_2)N-C(H)D(H)C(H)C(H)C(H)C(H)C(H)C(H)C(H)C(H)C(H)C$	Ū		germanium compound	
$C_6H_3^{*}Pf_2^{-2},0$ $H_{DH}(l-H)_2LI(UEl_2)_3$	111 13C 119Sp MS EA and V row	٨	lesslized metalloguele	94 199
$[Sn{N(R)C(Pn)C(H)C(Cu)N(R)}]$	1H 13C 119Sp MS EA and X ray	A	localized metallacycle	24, 132
$[Sn{N(H)C(Ph)C(H)C(En)N(H)}]$	¹ H ^{13}C ^{119}Sn MS EA and X-ray	A A	delocalized metallacycle	22, 24, 132
$[Sn{N(R)C(C_0H_1Me_4)C(H)C(tBu)N(R)}C]]$	¹ H 13 C 29 Si 119 Sn MS FA	Δ	delocalized inclanacycle	24, 152 46
	and X-ray	11		10
$[Sn{N(H)C(C_6H_4Me-4)C(H)C(tBu)N(H)}C]$	¹ H, ¹³ C, ¹¹⁹ Sn, MS, and EA			46
$[Sn{(N(R)C(Ph))_2CH}Cl]$	¹ H, ¹³ C, ²⁹ Si, ¹¹⁹ Sn, MS, EA,	В	trigonal pyramidal at Sn	24, 91
	and X-ray			
$[Sn{(N(H)C(Ph))_2CH}Cl]$	¹ H, ¹³ C, ¹¹⁹ Sn, MS, and EA			132
$[Sn{(N(R)C(Ph))_2CH}Br]$	¹ H, ¹³ C, ²⁹ Si, ¹¹⁹ Sn, MS, EA,	В	trigonal pyramidal at Sn	24, 91
$[S_{\mathbf{p}}(\mathbf{M}(\mathbf{D})\mathbf{C}(\mathbf{D}\mathbf{h})),\mathbf{C}\mathbf{H}(\mathbf{M}\mathbf{D}_{\mathbf{n}})]$	and \mathbf{A} -ray 11 13C 29S; 119Sp MS EA	D	trigonal pyramidal at Sn	01 05
$[Sii\{(iv(R)C(Fii))_2Cii\}(ivR_2)]$	and X-ray	D	ti igonai pyrannuar at Sh	91, 95
$[Sn{(N(R)C(Ph))_2CH}(OSO_2CF_3)]$	¹ H. ¹³ C. ²⁹ Si. ¹¹⁹ Sn. MS. and EA		probably (¹¹⁹ Sn) four-	91
	, , , , , , , , , , , ,		coordinate Sn(II)	
$[Sn\{(N(R)C(Ph))_2CH\}\{(OC(Ph))_2CH\}]$	¹ H, ¹³ C, ²⁹ Si, ¹¹⁹ Sn, MS, and EA			91
$[Sn\{(N(R)C(Ph))_2CH\}(NR_2)S]$	¹ H, ¹³ C, ²⁹ Si, ¹¹⁹ Sn, MS, EA,	В	four-coordinate Sn(II)	91, 95
	and X-ray		terminal sulfide	
$[Sn{(N(R)C(Ph))_2CH}(NR_2)Se]$	¹ H, 13 C, 25 Si, 115 Sn, MS, and EA		spectra suggest structural	91
$[S_{D}(N(D)C(Dh)), CH)(M_{0}), C]]$	14 13C 119Sn EA and V ray	D	analogue to sullide	19
$[Sn{(N(R)C(Ph))_2Ch}(Me)_2Ch]$	¹ H ^{13}C ^{119}Sn EA and X ray			10
$[Sn_1(N(Ph)C(Mh))_2CH_1(N(P))_2CH]$	¹ H 13 C 119 Sn MS EA and X-ray	Δ		133
$[Sn{(N(Ph)C(Me))_2CH}]$	¹ H ¹³ C ¹¹⁹ Sn MS and FA	Л		133
$[Sn{(N(Ph)C(Me))_2CH}C](1 2-0 O'C_eH_2^{t}Bu_2-3 5)]$	¹ H 13 C 119 Sn MS and EA			133
$[Sn{(N(Ph)C(Me))_2CH}Cl(S)]$	1 H. 119 Sn. and MS		unstable	133
$[Sn{(N(Ph)C(Me))_2CH}][BPh_4]$	¹ H. ¹³ C. ¹¹⁹ Sn. MS. and EA			133
$[Sn{(N(Ph)C(Me))_2CH}(NR_2)]$	¹ H. ¹³ C. ²⁹ Si. ¹¹⁹ Sn. MS. and EA			133
$[Sn{(N(Ph)C(Me))_2CH}(OSO_2CF_3)]$	¹ H, ¹⁹ F, ¹¹⁹ Sn, MS, and EA			133
$[Sn{(N(Ph)C(Me))_2CH}(N_3)]$	¹ H, ¹¹⁹ Sn, MS, and EA			133
$[Sn{(N(Ph)C(Me))_2CH}Cl(Cr(CO)_5)]$	¹ H, ¹³ C, ¹¹⁹ Sn, IR, MS, and EA			133
$[Sn{(N(Ph)C(Me))_2CH}Cl(W(CO)_5)]$	¹ H, ¹³ C, ¹¹⁹ Sn, IR, MS, and EA			133
$[Sn{(N(C_6H_2Me_3-2,4,6)C(Me))_2CH}Cl]$	¹ H, ¹³ C, IR, EA, and X-ray	В		135
$[Sn\{(N(C_6H_2Me_3-2,4,6)C(Me))_2CH\}(N_3)]$	¹ H, ¹³ C, ¹⁴ N, IR, EA, and X-ray	А	weak intermolecular	135
	111 1100 100 100 110	D	SnN contacts	
$[Sn{(N(C_6H_3)Pr_2-2,6)C(Me))_2CH}CI]$	¹ H, ¹¹⁹ Sn, MS, EA, and X-ray	В		34, 134
$[Sn{(1)(C_{H}, iP_{2}, 2, 6)(Me))_{2}CH}(USU_{2}CF_{3})]$ $[Sn{(N(C_{H}, iP_{2}, 2, 6)C(Me))_{2}CH}(N_{1})]$	-n,SII,F, MS, and X-ray	D		134
$[Sn_1(N(C_0H_0; \mathbf{P}_{2,0}, 0) \cup (N(\mathbf{C}_1)) \cup (N(C_0H_0; \mathbf{P}_{2,0}, 0)) \cup (N(C_0H_0; \mathbf{D}_{2,0}, \mathbf{D}_{2,0}, 0)) \cup (N(C_0H_0; \mathbf{D}_{2,0}, \mathbf{D}_{2,0}, \mathbf{D}_{2,0}, \mathbf{D})) \cup (N(C_0H_0; \mathbf{D}_{2,0}, \mathbf{D})) \cup (N(C_0H_0; \mathbf{D}_{2,0}, \mathbf{D})) \cup (N(C_0H_0; \mathbf{D}_{2,0}, \mathbf{D})) \cup (N(C_0H_0; \mathbf{D})) \cup (N$	11, SII, WIS, allu EA 1H 119Sn MS FA and V roy	вī	one chalated β directiminate	134 134
2.6)C(Me)=C(H)C(Me)=N(C_{e}H_{o}^{i}Pr_{o}-2.6)]	11, 511, 1415, LA, allu A-l'ay	D, I	+ one monodentate ligand	104
$[Sn{(N(C_6H_3^{i}Pr_2-2.6)C(Me))_2CH}(O^{i}Pr)]$	¹ H. EA. and X-rav	В	catalyst for living polymeriz-	34
	, , ,		ation of <i>rac</i> -lactide	
$[Sn\{(N(C_6H_3{}^iPr_2{\text{-}}2,6)C(Me))_2CH\}Cl_3]$	¹ H, ¹¹⁹ Sn, IR, MS, and EA		five-coordinate Sn atom	52
$[Sn\{(N(C_6H_3^iPr_2-2,6)C(Me))_2CH\}Br_3]$	¹ H, ¹³ C, IR, MS, EA, and X-ray	В	five-coordinate Sn atom	52
$[Sn\{(N(C_6H_3{}^iPr_2{\text{-}}2,6)C(Me))_2CH\}I_3]$	¹ H, ¹³ C, IR, MS, EA, and X-ray	В	five-coordinate Sn atom	52

complex	characterization	bonding mode	comments	ref
	Group 15			
$[P_{\{N(H)C(C_5Me_5)C(H)C(H)NH\}}^{-} \\ \{W(CO)_5\}_2]$	¹ H, ³¹ P, IR, MS, EA, and X-ray	В		136b
	Lanthanide	s		
$[Ce\{(N(R)C(Ph))_2CH\}_2Cl]$	¹ H, ¹³ C, MS, EA, and X-ray	В		54, 141
$[Ce{(N(R)C(Ph))_2CH}(CHR_2)_2]$	¹ H, ¹³ C, EA, and X-ray	В		54, 141
$[Ce\{(N(R)C(C_6H_4^{U}Bu-4))_2CH\}(NR_2)_2]$	¹ H, ¹³ C, ²⁹ Si, IR, MS, and X-ray	В		141
$[Pf\{(N(R)\cup(PII))_2\cup H\}_2\cup I]$	¹ H, 20 SI, MS, and EA 1H 13 C 29 S; MS, EA, and V row	D		54 54
$[Nu\{(N(R)C(Ph))_2CH\}_2CI]$ $[Sm\{(N(R)C(Ph))_2CH\}_2CI]$	¹ H ^{13}C ^{29}Si MS and EA	D		54 54
$[Sm{(N(R)C(Ph))_2CH}_2CH]$	¹ H and MS			54
$[Sm{(N(Ph)C(Me))_2CH}_2]$	IR and X-ray	А		137
$[Sm{(N(iPr)C(Me))_2CH}_9Br]$	IR and X-ray	B		138
$[Sm{N(R)C(C_6H_4Me-4)C(H)C(Ad)}]$	X-ray	B		136a
N(R) ₂]	Ū.			
$[(Sm{(N(R)C(C_6H_4Ph-4))_2CH})_2(\mu - {(N(R)C(C_6H_4Ph-4))_2CH})]$	X-ray	B, D	subvalent Sm?	136a
$[KSm{(N(R)C(Ph))_2CH}_2]_2$	X-ray	B, D	dimer has one N,N - bridging ligand to K, and the other has an η^6 -contact to neigh- boring K atom; subvalent Sm?	136a
$[Gd{(NC_5H_4)_2CH}_3]$	X-ray	А		140
$[Gd{(N(Ph)C(Me))_2CH}_3]$	X-ray	Α		137
$[Gd{(N(Ph)C(Me))_2CH}Br_2(thf)_2]$	IR and X-ray	Α		137
$[Gd\{(N(^{i}Pr)C(Me))_{2}CH\}_{2}Br]$	IR and X-ray	В		137
$[Tm\{(N(R)C(Ph))_2CH\}_2I]$	MS and EA	_		54
$[Yb{(N(R)C(Ph))_2CH}_2]$	¹ H, ¹³ C, ¹⁷¹ Yb, ²⁹ Si, MS,	В		54, 136a, 139
$[Yb\{N(R)C(Ph)C(H)C(^tBu)N(R)\}_2]$	EA, and X-ray 1 H, 13 C, 171 Yb, 29 Si, MS, and EA			54, 154
[Yb{(N(R)C(Ph)) ₂ CH} ₂ (thf) ₂]	1 H. 13 C. and 29 Si			54
$[Yb{(N(R)C(Ph))_2CH}_2Cl]$	¹ H. MS. and EA			54
$[Yb{(N(R)C(C_6H_4Ph-4))_2CH}_2]$	¹ H, ¹³ C, ¹⁷¹ Yb, EA, and X-ray	B (but one	in solution may (¹⁷¹ Yb NMR) have planar	136a
	unu n rug	Yb-N bond)	three-coordinate Yb	
$\begin{array}{l} [Yb\{N(R)C(C_{6}H_{4}Me\text{-}4)C(H)\text{-}\\ C(Ad)N(R)\}_{2}] \end{array}$	¹ H, ¹³ C, ¹⁷¹ Yb, EA, and X-ray	B (but one longer Yb-N bond)	in solution may (¹⁷¹ Yb NMR) have planar, three-coordinate Yb	136a
[(Yb{(N(R)C(Ph)) ₂ CH}(µ-I)(thf)] ₂	¹ H. ¹³ C. ¹⁷¹ Yb. and X-ray	B		136a
$[Yb{(N(R)C(C_6H_4Ph-4))_2CH}Cl(\mu-Cl)_2-Li(thf)(OEt_2)]\cdot OEt_2$	X-ray	B		136a
$[Yb{(N(R)C(Ph))_2CH}_2{Li(thf)}_2]$	X-ray	D	subvalent Yb?	136a
$[Yb{(N(R)C(C_{6}H_{4}Ph-4))_{2}CH}_{2}{Li(thf)}_{2}]$	X-ray	D	subvalent Yb?	136a
	Actinides			
$[Th{(N(R)C(Ph))_2CH}_2Cl_2]$	¹ H, ¹³ C, MS, EA, and X-ray	В		144
$[U{(N(R)C(Ph))_2CH}Cl(\mu-Cl)(NR)]_2-$ [UCl ₂ {(N(R)C(Ph))_2CH}- {N(R)C(Ph)NC(Ph))_2CH}-	¹ H, EA, and X-ray	В	dinuclear U(VI) cation, U(III) anions (one β -diket- iminate, one 1.3-diazaallyl)	22
			· · · · · · · · · · · · · · · · · · ·	

5. β -Diketiminatometal Complexes

Table 1 provides a summary of data on β -diketiminatometal complexes (and aldiminato analogues) [MS = mass spectrometry; EA = elemental analyses; ^{*x*}M corresponds to NMR-active nucleus; UV–vis = electronic spectroscopy; IR = infrared spectroscopy; El = electrochemistry; ESR = electron paramagnetic resonance; MCD = magnetic circular dichroism; μ_{eff} = magnetic moment; R = SiMe₃; R' = Si^tBu₃; Ad = adamantyl; Cp = η^5 -C₅H₅; Cp* = η^5 -C₅Me₅; tmen = (Me₂NCH₂)₂; pmdeta = (Me₂NCH₂CH₂)₂NMe; HMPA = OP(NMe₂)₃; COD = 1,5-cyclooctadiene; COE = cyclooctene; NBE = norbornene].

6. Concluding Remarks

The field of β -diiminatometal (largely β -diketiminatometal) complexes is now very extensive and surely has reached maturity. Of the 166 citations in section 5, 150 deal with original findings. The topic has witnessed rapid growth, as evident from the 38 papers published in 2001, the 20 in 2000, the 49 in 1994–1999, the 14 dealing with unpublished work, and only 32 publications before 1990. Of the 63 natural metals, β -diiminates have been reported for all but Rb, Cs, Y, La, Nb, Ta, Re, Ru, Os, Ag, Au, Hg, Pb, As, Sb, Bi, Eu, Dy, Ho, and Lu. Data for 475 metal β -diiminates are shown in Table 1.

 β -Diketiminates have an important role as spectator ligands, by virtue of their strong binding to metals, their tunable and extensive steric demands, and their diversity of bonding modes. They are often able to stabilize complexes in unusually low metal oxidation states, as cations, and others containing multiply bonded (to metal) coligands. Many such complexes are coordinatively unsaturated and this and other features are the key to their ability to function as catalysts for processes as varied as olefin

oligo-, poly-, and copolymerization, ring-opening polymerization of lactide or related monomers, and copolymerization of expoxides and carbon dioxide.

The β -diketiminates are structurally related to ligands such as porphyrins and corrins. Appropriate Cu(II) β -diketiminates are biomimetic analogues of Cu(II) protein active sites, for example, Cu(II) phenolates as intermediates in the catalytic cycles of metalloenzymes such as galactose oxidase.

7. Acknowledgments

We thank EPSRC (U.K.) and SPECS/BIOSPECS (and Dr. R. L. Wife) for a case award to J.R.S., the European Commission for a TMR Marie Curie Fellowship for L.B.-M., and our collaborators at Sussex (and especially D.-S. Liu, D. Phil., Sussex, 1993; now professor at Shanxi University, People's Republic of China) for their valuable research contributions.

8. Appendix (Added in Proof): 2002 Publications up to End of June

We are aware of 27 papers in the above category. They have contributed to the following areas, using the numbering system of the list of contents. Abbreviations used: $R = SiMe_3$, $L^1 = [{N(C_6H_3^iPr_2-$ 2,6)C(Me) $_{2}$ CH], L² = [{N(C₆H₃ⁱPr₂-2,6)C(^tBu)}₂CH], $L^{3} = [{N(CH_{2}CH_{2}NEt_{2})C(Me)}_{2}CH].$

Section 3. The compounds $[YbL^4{\mu-Li(thf)}_2] [L^4 =$ $\{N(R)C(R')\}_2CH, R' = Ph \text{ or } C_6H_4Ph-4]$ have been formulated as Yb(II) complexes with a *dianionic* β -diketiminato ligand.¹⁵⁵

Section 4.1. The compounds [M{(N(R)C(C₆H₃Me₂-2,6))₂SiR}]₂ have been described.¹⁵⁶

Section 4.2. $[Mg(L^1)^iPr]$ is an initiator for the living syndioselective polymerization of methyl methacrylate.¹⁵⁷ $[Mg(L^1)(\mu-F)(thf)]_2$ has been reported.¹⁵⁸ The compounds $[Mg(L^1)(N^iPr_2)(thf)]$ and $[Mg(L^1)(O^tBu)(thf)]$ have been compared with Zn analogues.¹⁵⁹

Section 4.3. DFT studies on early transition metal complexes have been described.¹⁶⁰

Seciton 4.3.1. [Sc(L²)Me₂] has been converted into cationic Sc complexes, which are procatalysts for ethylene polymerization.¹⁶¹ The complex $[ScBr(\mu L^{3}MgBr)_{2}$ has been formulated as a Sc(I) complex.¹⁶²

Section 4.3.2. Chiral C₂-symmetric $Zr(IV) \beta$ -diketiminates have been described.¹⁶³

Section 4.3.3. Various β -diketiminato Cr(III) complexes are procatalysts for ethylene polymerization.¹⁶⁴

Section 4.4. Mössbauer and EPR spectra of some planar high spin Fe(II) β -diketiminates have been analyzed.¹⁶⁵ Further reactions of [Rh(L¹)(COE)]¹⁶⁶ and [Pt(L1)Me3]167 have been described. Transient superoxocopper and bis(μ -oxo)dicopper β -diketiminates have been identified.¹⁶⁸ [Cu{(N(C₆H₂Me₃-2,4,6)C(Me))₂CH}(OAc)] underwent oxidative degradation yielding $\{N(C_6H_2Me_3-2,4,6)C(Me)\}_2CO.^{169}$

Section 4.5. $[Zn(L^1)X]$ $[X = N^iPr_2, O^tBu, OSiPh_3(thf)]$ complexes have been reported.¹⁵⁹ An MO study of $[Zn(L^1)(OMe)]$ -catalyzed copolymerization of CO₂ and cyclohexene oxide has been reported,¹⁷⁰ as has a review of stereoselective metal (including Zn)-catalyzed polymerizations.¹⁷¹

Section 4.6. Further studies of BODIPY dyes,¹⁷² and a review of Al(I) complexes¹⁷³ have been published. $[Al(L^5)I_2]$ and a higher homologue,¹⁷⁴ as well as $[{Al(L^5)Cl}_2(\mu-O)],^{175}$ L⁵ = $[{N(Me)C(Me)}_2CH]$ have been reported. Data on [Ga(L1)(PPh2){OSO2CF3}],176 $[In(L^1)Cl]_2$,¹⁷⁷ and $[In(L^1)(Cl)(\mu-OH)]_2$ have appeared.

Seciton 4.8. A review of nonclassical organolanthanide chemistry provided data on $[{K(\mu-L^4)SmL^4}_2]$ and $[YbL^4{\mu-Li(thf)}_2]$ (see also ref. 155).¹⁷⁸ The compounds $[Pr(L^3)X_2]$ (X = Cl, Br, BH₄) have a pseudooctahedral Pr environment.¹⁷⁹ The compounds $[Yb(L^1)Cl_2(thf)_2], [Yb(L^1)Cl(\eta^5-C_5H_4Me)], [Yb(L^1)(\hat{NR'}_2)(\eta^5-C_5H_4Me)], [Yb(L^1)(\hat{NR'}_2)(\eta^5-C_5H_4Me)]], [Yb(L^1)(\hat{NR'}_2)(\eta^5-C_5H_4Me)]], [Yb(L^1)(\hat{NR'}_2)(\eta^5-C_5H_4Me)]], [Yb(L^1)(\hat{NR'}_2)(\eta^5-C_5H_4Me)]], [Yb(L^1)(\hat{NR'}_2)(\eta^5-C_5H_4Me)]]$ C_5H_4Me)] (R' = ⁱPr, Ph) have been characterized¹⁸⁰ and mentioned in a review.¹⁸¹

Note Added After ASAP Posting

An earlier version of this article posted ASAP August 24, 2002 had an incorrect N-N bond length on p 3044 (second full paragraph). The correct bond length appears in this version posted September 11, 2002.

9. References

- (1) Mehrotra, R. C.; Bohra, R.; Gaur, D. P. Metal β -Diketonates and Allied Derivatives; Academic Press: New York, 1978.
- (2)Holm, R. H.; Everett, G. W.; Chakravorty, A. Prog. Inorg. Chem. 1966, 7, 83.
- (3) Calligaris, M.; Randaccio, L. In Comprehensive Coordination Chemistry; Wilkinson, G., Gillard, R. D., McCleverty, J. A., Eds.; Pergamon: Oxford, U.K., 1987; Vol. 2, p 20.1.
- (4) Curtis, N. F. In Comprehensive Coordination Chemistry; Wilkin-Son, G., Gillard, R. D., McCleverty, J. A., Eds.; Pergamon: Oxford, U.K., 1987; Vol. 2, p 21.2.
- Mashiko, T.; Dolphin, D. In Comprehensive Coordination Chem-(5)
- Mashiko, I.; Dolphin, D. In *Comprehensive Coordination Chemistry*, Wilkinson, G., Gillard, R. D., McCleverty, J. A., Eds.; Pergamon: Oxford, U.K., 1987; Vol. 2, p 21.1.
 (a) Prust, J.; Most, K.; Müller, A.; Stasch, A.; Usón, I. *Eur. J. Inorg. Chem.* 2001, 1613. (b) Prust, J.; Stasch, A.; Zheng, W.; Roesky, H. W.; Alexopoulos, E.; Usón, I.; Böhler, D.; Schuchardt, T. *Organometallics* 2001, *20*, 3825.
 Jin Y.; Navole, B. M. Manumula, 2020, 200 2007. (6)
- (7) Jin, X.; Novak, B. M. Macromolecules 2000, 33, 6205.
- (a) McGeachin, S. G. Can. J. Chem. 1968, 46, 1903. (b) Dorman, L. C. Tetrahedron Lett. 1966, 4, 459. (c) Barry, W. J.; Finar, I.; Mooney, E. F. Spectrochim. Acta 1965, 21, 1095.
- (9) Bonnett, R.; Bradley, D. C.; Fisher, K. J. Chem. Commun. 1968, 886.
- (10) Bonnett, R.; Bradley, D. C.; Fisher, K. J.; Rendall, I. F. J. Chem. Soc. (A) 1971, 1622
- (11) Parks, J. E.; Holm, R. H. Inorg. Chem. 1968, 7, 1408.
- (12) Richards, C. P.; Webb, G. A. J. Inorg. Nucl. Chem. 1969, 31, 3459
- (13)Tsybina, N. M.; Vinokurov, V. G.; Protopopova, T. V.; Skoldinov, A. P. J. Gen. Chem., USSR 1966, 36, 1383.
- (14) Cotton, F. A.; DeBoer, B. G.; Pipal, J. R. Inorg. Chem. 1970, 9, 783.
- (15) Elder, M.; Penfold, B. R. J. Chem. Soc. (A) 1969, 2556.
- (16) Honeybourne, C. L.; Webb, G. A. Mol. Phys. 1969, 17, 17.
- (17) Honeybourne, C. L.; Webb, G. A. Chem. Phys. Lett. 1968, 2, 426.
- (18) Hitchcock, P. B.; Lappert, M. F.; Liu, D.-S. J. Chem. Soc., Chem. Commun. 1994, 1699.
- (19) Hitchcock, P. B.; Lappert, M. F.; Liu, D.-S. J. Chem. Soc., Chem. Commun. 1994, 2637
- Lappert, M. F.; Liu, D.-S. Neth. Patent 9401515, 1994. (20)
- (21) Lappert, M. F.; Liu, D.-S. Neth. Patent 9500085, 1995.
- (22) Lappert, M. F.; Liu, D.-S. J. Organomet. Chem. 1995, 500, 203.
- (23) Caro, C. F.; Lappert, M. F.; Merle, P. G. Coord. Chem. Rev. 2001, 219-221, 605.
- (24) Hitchcock, P. B.; Hu, J.; Lappert, M. F.; Layh, M.; Liu, D.-S.; Severn, J. R.; Shun, T. An. Quim. Int. Ed. 1996, 92, 186.
- (25)Feldman, J.; McLain, S. J.; Parthasarathy, A.; Marshall, W. J.; Calabrese, C. J.; Arthur, S. D. Organometallics 1997, 16, 1514.
- (26) Cui, C.; Roesky, H. W.; Schmidt, H.-G.; Noltemeyer, M.; Hao, H.; Cimpoesu, F. Angew. Chem., Int. Ed. Engl. 2000, 39, 4274.
- Hardman, N. J.; Eichler, B. E.; Power, P. P. Chem. Commun. (27)2000, 1991
- (28)Stender, M.; Phillips, A. D.; Power, P. P. Inorg. Chem. 2001, 40, 5314.

- (29) (a) Smith, J. M.; Lachicotte, R. L.; Holland, P. L. Chem. Commun. **2001**, 1542. (b) Smith, J. M.; Lachicotte, R. L.; Pittard, K. A.; Cundari, T. R.; Lukat-Rodgers, G.; Rodgers, K. R.; Holland, P.
- (30) Gibson, V. C.; Maddox, P. J.; Newton, C.; Redshaw, C.; Solan, G.; White, A. J. P.; Williams, D. J. *Chem. Commun.* **1998**, 1651.
- (31) Fekl, U.; Kaminsky, W.; Goldberg, K. I. J. Am. Chem. Soc. 2001, 123, 6423
- (32) Holland, P. L.; Tolman, W. B. J. Am. Chem. Soc. 2000, 122, 6331.
- (33) Chamberlain, B. M.; Cheng, M.; Moore, D. R.; Ovitt, T. M.; Lobkovsky, E. B.; Coates, G. W. J. Am. Chem. Soc. 2001, 123, 3229
- Dove, A. P.; Gibson, V. C.; Marshall, E. L.; White, A. J. P.; (34)Williams, D. J. Chem. Commun. 2001, 283.
- (35) Cheng, M.; Moore, D. R.; Reczek, J. J.; Chamberlain, B. M.; Lobkovsky, E. B.; Coates, G. W. J. Am. Chem. Soc. 2001, 123, 8738.
- (36) Deelman, B.-J.; Lappert, M. F.; Lee, H.-K.; Mak, T. C. W.; Leung, W.-P.; Wei, P.-R. Organometallics **1997**, *16*, 1247.
 Stender, M.; Wright, R. J.; Eichler, B. E.; Prust, J.; Olmstead,
- M. M.; Roesky, H. W.; Power, P. P. J. Chem. Soc., Dalton Trans. 2001, 3465.
- (38) Brook, A. G.; Bassindale, A. R. In Organic Chemistry, De Mayo, P., Ed.: Academic Press: New York, 1980: Vol. 2.
- (39) Hitchcock, P. B.; Lappert, M. F.; Layh, M. Chem. Commun. 1998, 201
- (40)Hitchcock, P. B.; Lappert, M. F.; Layh, M. J. Chem. Soc., Dalton Trans. 2001, 2409.
- (41) Evans, I. P.; Everett, G. W.; Sargeson, A. M. J. Am. Chem. Soc. 1976, 98, 8041.
- Danopoulos, A. A.; Wilkinson, G.; Sweet, T. K. N.; Hursthouse, (42)M. B. J. Chem. Soc., Dalton Trans. 1995, 205.
- (43) Huang, Y.-L.; Huang, B.-H.; Ko, B.-T.; Lin, C.-C. J. Chem. Soc., Dalton Trans. 2001, 1359.
- Sidorov, A. A.; Ponina, M. O.; Deomidov, S. M.; Novotortsev, V. (44)M.; Demonceau, A.; Nefedov, S. E.; Eremenko, I. L.; Moiseev, I. I. Chem. Commun. 2000, 1383.
- (45) Hitchcock, P. B.; Lappert, M. F.; Sablong, R. Unpublished work.
- (46) Bourget-Merle, L.; Hitchcock, P. B.; Lappert, M. F. Unpublished work.
- Paulmier, C.; Mollier, Y.; Lozac'h, N. Bull. Soc. Chim. Fr. 1965, (47) 2463
- (a) Kuhn, N.; Lanfermann, H.; Schmitz, P. *Liebigs Ann. Chem.* **1987**, 727. (b) Kulichenko, A. V.; Kurbatov, V. P.; Kukharicheva, E. S.; Osipov, O. A. *J. Gen. Chem., USSR* **1987**, *55*, 612. (48)
- (49) Maraval, A.; Arquier, D.; Igau, A.; Coppel, Y.; Donnadieu, B.; Majoral, J.-P. Organometallics **2001**, *20*, 1716.
 (50) (a) Fustero, S.; de la Torre, M. G.; Pina, B.; Fuentes, A. S. J. Org. Chem. **1999**, *64*, 5551. (b) Cuadrado, P.; González-Nogal, A. M. Tetrahedron Lett. 1998, 39, 1446.
- (51) Yokota, S.; Tachi, Y.; Nishiwaki, N.; Ariga, M.; Itoh, S. Inorg. Chem. 2001, 40, 5316.
- (52) Råke, B.; Zülch, F.; Ding, Y.; Prust, J.; Roesky, H. W.; Noltem-eyer, M.; Schmidt, H.-G. Z. Anorg. Allg. Chem. 2001, 627, 836.
- Caro, C. F.; Hitchcock, P. B.; Lappert, M. F. Chem. Commun. (53)1999, 1433.
- (54) Hitchcock, P. B.; Lappert, M. F.; Tian, S. J. Chem. Soc., Dalton
- Trans. 1997, 1945. (55) Hitchcock, P. B.; Lappert, M. F.; Layh, M.; Liu, D. S.; Sablong, R.; Shun, T. *J. Chem. Soc., Dalton Trans.* 2000, 2301.
 (56) Clegg, W.; Coles, S. J.; Cope, E. K.; Mair, F. S. *Angew. Chem.*,
- Int. Ed. Engl. 1998, 37, 796.
- Neculai, A. M.; Roesky, H. W.; Neculai, D.; Magull, J. Organo-(57)metallics 2001, 20, 5501.
- Ding, Y.; Hao, H.; Roesky, H. W.; Noltemeyer, M.; Schmidt, H.-G. Organometallics **2001**, *20*, 4806. (58)
- (59) Gornitzka, H.; Stalke, D. Organometallics 1994, 13, 4398.
 (60) Deelman, B.-J.; Hitchcock, P. B.; Lappert, M. F.; Lee, H.-K.; Leung, W.-P. J. Organomet. Chem. 1996, 513, 281.
 (61) Mair, F. S.; Scully, D.; Edwards, A. J.; Raithby, P. R.; Snaith, R. Polyhedron 1995, 14, 2397.
- (a) Hitchcock, P. B.; Lappert, M. F.; Liu, D.-S. Unpublished work.
 (b) Clegg, W.; Cope, E. K.; Edwards, A. J.; Mair, F. S. *Inorg.* (62)Chem. 1998, 37, 2317.
- (63) Kuhn, N.; Speis, M. Inorg. Chim. Acta 1988, 145, 5.
- (64) Caro, C. F.; Hitchcock, P. B.; Lappert, M. F. Unpublished work. Bailey, P. J.; Dick, C. M. E.; Fabre, S.; Parsons, S. J. Chem. Soc., (65)
- Dalton Trans. 2000, 1655. (66)
- Gibson, V. C.; Segal, J. A.; White, A. J. P.; Williams, D. J. J. Am. Chem. Soc. **2000**, 122, 7120. (67)
- Bailey, P. J.; Coxall, R. A.; Dick, C. M. E.; Fabre, S.; Parsons, S.
- Organometallics 2001, 20, 798.
 (68) Bailey, P. J.; Liddle, S. T.; Morrison, C. A.; Parsons, S. Angew. Chem., Int. Ed. Engl. 2001, 40, 4463.
- (69) Prust, J.; Most, K.; Müller, I.; Alexopoulos, E.; Stasch, A.; Usón, I.; Roesky, H. W. *Z. Anorg. Allg. Chem.* **2001**, *627*, 2032.
 (70) O'Keefe, B. J.; Hillmeyer, M. A.; Tolman, W. B. *J. Chem. Soc.*,
- Dalton Trans. 2001, 2215.

- (71) Corazza, F.; Floriani, C.; Chiesi-Villa, A.; Guastini, C.; Ciurli, S. J. Chem. Soc., Dalton Trans. **1998**, 2341. (72) Chisholm, M. H.; Hufman, J. C.; Phomphrai, K. J. Chem. Soc.,
- Dalton Trans. 2001, 222.
- (73) Bercaw, J. E.; Davies, D. L.; Wolczanski, P. T. Organometallics
- **1986**, *5*, 443. Lee, L. W. M.; Piers, W. E.; Elsegood, M. R. J.; Clegg, W.; Parvez, (74)M. Organometallics 1999, 18, 2947.
- Knight, L. K.; Piers, W. E.; McDonald, R. Chem. Eur. J. 2000, (75)6, 4322
- Hayes, P. G.; Piers, W. E.; Lee, L. W. M.; Knight, L. K.; Parvez, M.; Elsegood, M. R. J.; Clegg, W. *Organometallics* **2001**, *20*, 2533. Kim, W.-K.; Fevola, M. J.; Liable-Sands, L. M.; Rheingold, A. (76)(77)
- L.; Theopold, K. H. Organometallics 1998, 17, 4541 (78) Budzelaar, P. H. M.; van Oort, A. B.; Orpen, A. G. Eur. J. Inorg.
- Chem. 1998, 1485. (79)
- Kakaliou, L.; Scanlon, W. J.; Qian, B.; Baek, S. W.; Smith, M. R.; Motry, D. H. *Inorg. Chem.* **1999**, *38*, 5964. Theopold, K. H.; Kim, W.-K. Int. Patent Appl. WO 99/41290,
- (80)1999
- (81) Deng, L.; Schmid, R.; Ziegler, T. Organometallics 2000, 19, 3069.
 (82) Guram, A. S.; Jordan, R. F.; Taylor, D. F. J. Am. Chem. Soc. 1991, 113, 1833
- Kristen, M. O.; Görtz, H. H.; Deelman, B.-J.; Lappert, M. F.; (83)Leung, W.-P.; Lee, H.-K. Eur. Patent EP 0803520B1, 1998; U.S. Patent 006034258, 2000.
- Deelman, B.-J.; Lappert, M. F.; Leung, W.-P.; Lee, H.-K.; Mak, T. C. W. Organometallics **1999**, *18*, 1444. Rahim, M.; Taylor, N. J.; Xin, S.; Collins, S. Organometallics
- (85) 1998, 17, 1315
- Vollmerhaus, R.; Rahim, M.; Tomaszewski, R.; Xin, S.; Taylor, (86)N. J.; Collins, S. Organometallics 2000, 19, 2161.
- Qian, B.; Scanlon, W. J.; Smith, M. R.; Motry, D. H. Organo-(87) metallics 1999, 18, 1693.
- Richeson, D. S.; Mitchell, J. F.; Theopold, K. H. Organometallics (88) 1989, 8, 2570.
- Filippou, A. C.; Völkl, C.; Rogers, R. D. J. Organomet. Chem. (89)
- **1993**, *463*, 135. Gibson, V. C.; Newton, C.; Redshaw, C.; Solan, G. A.; White, A. (90)J. P.; Williams, D. J. *Eur. J. Inorg. Chem.* **2001**, 1895. Severn, J. R. D. Philos. Thesis, University of Sussex, 1998.
- (91)
- (92) Eaton, D. R.; LaLancette, E. A. J. Chem. Phys. 1964, 41, 3534.
- (93) Murakami, Y.; Sakata, K. Inorg. Chim. Acta 1968, 2, 273.
- Nishida, Y.; Oishi, N.; Kida, S. Inorg. Chim. Acta 1979, 32, 7. (94)
- Hitchcock, P. B.; Lappert, M. F.; Severn, J. R. Unpublished work. (95)Healy, P. C.; Bendall, M. R.; Doddrell, D. M.; Skelton, B. W.; White, A. H. Aust. J. Chem. **1979**, *32*, 727. (96)
- (97)Sheldrick, W. S.; Knorr, R.; Polzer, H. Acta Crystallogr., Sect. B 1979, 35, 739
- (98) Knorr, R.; Polzer, H.; Bischler, E. J. Am. Chem. Soc. 1975, 97, 643.
- Knorr, R.; Polzer, H.; Weiss, A.; Bischler, E. J. Am. Chem. Soc. (99)1975, 97, 644.
- Knorr, R.; Weiss, A.; Polzer, H.; Räpple, E. J. Am. Chem. Soc. (100) 1977, 99, 650.
 (101) Dai, X.; Warren, T. H. Chem. Commun. 2001, 1998.
- (102) Holland, P. L.; Tolman, W. B. J. Am. Chem. Soc. 1999, 121, 7270. (103) Randall, D. W.; DeBeer George, S.; Holland, P. L.; Hedman, B.; Hodgson, K. O.; Tolman, W. B.; Solomon, E. I. J. Am. Chem. Soc. **2000**, 122, 11632.
- Jazdzewski, B. A.; Holland, P. L.; Pink, M.; Young, V. G.; (104)Spencer, D. J. E.; Tolman, W. B. *Inorg. Chem.* **2001**, *40*, 6097.
- DeHaven, P. W.; Goedken, V. L. Inorg. Chem. 1979, 18, 827. (105)
- (106) Brunner, H.; Rahman, A. F. M. M. Z. Naturforsch. B 1983, 38,
- (107) Cheng, M.; Ovitt, T. M.; Hustad, P. D.; Coates, G. W. Polym. Prepr. (Am. Chem. Soc, Div. Polym. Chem.) 1999, 40, 542
- Cheng, M.; Attygalle, A. B.; Lobkovsky, E. B.; Coates, G. W. J. Am. Chem. Soc. **1999**, *121*, 11583. (108)
- (109) Cheng, M.; Darling, N. A.; Lobkovsky, E. B.; Coates, G. W. Chem. Commun. 2000, 2007.
- Cheng, M.; Lobkovsky, E. B.; Coates, G. W. J. Am. Chem. Soc. 1998, 120, 11018. (110)
- (111) Hao, H.; Cui, C.; Roesky, H. W.; Bai, G.; Schmidt, H.-G.; Noltemeyer, M. Chem. Commun. 2001, 1118
- (112) Farwell, J. D.; Hitchcock, P. B.; Lappert, M. F. Unpublished work.
- (113) Kuhn, N.; Kuhn, A.; Boese, R.; Augart, N. J. Chem. Soc., Chem. Commun. 1989, 975.
- (114) Kuhn, N.; Kuhn, A.; Speis, M.; Bläser, D.; Boese, R. Chem. Ber. 1990, 123, 1301.
- Yalpani, M.; Köster, R.; Boese, R. Chem. Ber. 1992, 125, 15. (115)
- (a) Qian, B.; Baek, S. W.; Smith, M. R. Polyhedron 1999, 18, (116)2405. (b) Treibs, A. Kreutzer, F.-H. Liebigs Ann. Chem. 1968, 718, 208. (c) Chen, J.; Burghart, A.; Derecskei-Kovacs, A.; Burgess, K. *J. Org. Chem.* **2000**, *65*, 2900. (d) Beer, G.; Niederalt, C.; Grimme, S.; Daub, J. *Angew. Chem., Int. Ed. Engl.* **2000**, 39, 3252.

- (117) Quain, B.; Ward, D. L.; Smith, M. R. Organometallics 1998, 17, 3070
- (118) Radzewich, C. E.; Coles, M. P.; Jordan, R. F. J. Am. Chem. Soc. 1998, 120, 9384.
- (119) Boesveld, M.; Hitchcock, P. B.; Lappert, M. F. Unpublished work.
 (120) Coslédan, F.; Hitchcock, P. B.; Lappert, M. F. *Chem. Commun.* 1999, 705.
- (121) Kuhn, N.; Fuchs, S.; Steimann, M. Z. Anorg. Allg. Chem. 2000, 626. 1387.
- (122) (a) Kuhn, N.; Fuchs, S.; Maichle-Mössmer, C.; Niquet, E. Z. Anorg. Allg. Chem. 2000, 626, 2248. (b) Fuchs, S.; Steinmann, USA (2010) 100 (2010) 1 M.; Kuhn, N. *Phosphorus, Sulfur Silicon* **2001**, *168*, 573.
- (123) Kuhn, N.; Fuchs, S.; Steinmann, M. Eur. J. Inorg. Chem. 2001, 359
- (124) Cui, C.; Roesky, H. W.; Hao, H.; Schmidt, H.-G.; Noltemeyer, M. Angew. Chem., Int. Ed. Engl. 2000, 39, 1815.
 (125) Hardman, N. J.; Cui, C.; Roesky, H. W.; Fink, W. H.; Power, P. P. Angew. Chem., Int. Ed. Engl. 2001, 40, 2172.
 (100) Cui & Kingler S. Understeiner, P. P. Parler, H. W. Neltenerger, P. P. 2011, 40, 2172.
- (126) Cui, C.; Köpke, S.; Herbst-Irmer, R.; Roesky, H. W.; Noltemeyer, M.; Schmidt, H.-G.; Wrackmeyer, B. J. Am. Chem. Soc. 2001, 123, 9091.
- (127) Cui, C.; Roesky, H. W.; Schmidt, H.-G.; Noltemeyer, M. Angew. Chem., Int. Ed. Engl. 2000, 39, 4531.
- (a) Kuhn, N.; Fahl, J.; Fuchs, S.; Steinmann, M.; Henkel, G.; (128)Maulitz, A. H. Z. Anorg. Allg. Chem. 1999, 625, 2108. (b) Kuhn, N.; Kuhn, A.; Lewandowski, J.; Speis, M. Chem. Ber. 1991, 124, 2197
- (129) Stender, M.; Eichler, B.; Hardman, N. J.; Power, P. P.; Prust, J.; Noltemeyer, M.; Roesky, H. W. Inorg. Chem. 2001, 40, 2794.
- (130) Hardman, N. J.; Power, P. P. *Inorg. Chem.* 2001, 40, 2474.
 (131) Hardman, N. J.; Power, P. P. *Chem. Commun.* 2001, 1184.
- (132) Hitchcock, P. B.; Hu, J.; Lappert, M. F. Unpublished work. (133) Akkari, A.; Byrne, J. J.; Saur, I.; Rima, G.; Gornitzka, H.; Barrau,
- J. J. Organomet. Chem. 2001, 622, 190. (134) Ding, Y.; Roesky, H. W.; Noltemeyer, M.; Schmidt, H.-G.; Power, P. P. Organometallics 2001, 20, 1190.
- (135) Ayers, A. E.; Klapötke, T. M.; Dias, H. V. R. Inorg. Chem. 2001, 40. 1000.
- (136) (a) Hitchcock, P. B.; Khvostov, A. V.; Lappert, M. F. Unpublished work. (b) Schiffer, M.; Scheer, M. Angew. Chem., Int. Ed. Engl. 2001, 40, 3413.

- (137) Drees, D.; Magull, J. Z. Anorg. Allg. Chem. 1994, 620, 814.
 (138) Drees, D.; Magull, J. Z. Anorg. Allg. Chem. 1995, 621, 948.
 (139) Hitchcock, P. B.; Holmes, S. A.; Lappert, M. F.; Tian, S. J. Chem.

- (139) Fitchcock, P. B., Holmes, S. A., Lappert, M. F., Han, S. J. Chen. Soc., Chem. Commun. 1994, 2691.
 (140) Mandel, A.; Magull, J. Z. Anorg, Allg. Chem. 1995, 621, 941.
 (141) Hitchcock, P. B.; Lappert, M. F.; Li, Z. Unpublished work.
 (142) Hitchcock, P. B.; Lappert, M. F.; Protchenko, A. V. Unpublished work.
- (143) Hitchcock, P. B.; Lappert, M. F.; Liu, D.-S. J. Organomet. Chem.
- **1995**, *488*, 241. (144) Hitchcock, P. B.; Hu, J.; Lappert, M. F.; Tian, S. J. Organomet. Chem. 1997, 536, 473.
- (145) Hitchcock, P. B.; Lappert, M. F.; Layh, M. Chem. Commun. 1998, 2179.
- (146) Bai, S.-D.; Liu, D.-S.; Wei, Z.-H. Unpublished work. (147) Antolini, F.; Lappert, M. F. Unpublished work.
- Honeybourne, C. L.; Webb, G. A. J. Chem. Soc., Chem. Commun. (148)1968, 739.
- (149) Chen, X.; Liu, D.-S. Unpublished work.
- (150) Budzelaar, P. H. M.; de Gelder, R.; Gal, A. W. Organometallics **1998**, *17*, 4121.

- (151) Budzelaar, P. H. M.; Moonen, N. N. P.; de Gelder, R.; Smits, J. M. M.; Gal, A. W. Eur. J. Inorg. Chem. **2000**, 753. (152) Attanasio, D.; Tomlison, A. G.; Alagna, L. J. Chem. Soc., Chem.
- Commun. 1977, 618.
- Radzewich, C. E.; Guzei, I. A.; Jordan, R. F. J. Am. Chem. Soc. (153)1999, *121*, 8673.
- (154) Hitchcock, P. B.; Lappert, M. F.; Tian, S. J. Organomet. Chem. 1997, 549, 1.
- Avent, A. G.; Khvostov, A. V.; Hitchcock, P. B.; Lappert, M. F. Chem. Commun. 2002, 1410. (155)
- Farwell, J. D.; Hitchcock, P. B.; Lappert, M. F. Chem. Commun. (156)2002, 456.
- Dove, A. P.; Gibson, V. C.; Marshall, E. L.; White, A. J. P.; (157)
- Williams, D. J. *Chem. Commun.* **2002**, 1208. Hao, H.; Roesky, H. W.; Ding, Y.; Cui, C.; Schormann, M.; Schmidt, H.-G.; Noltemeyer, M.; Žemva, B. *J. Fluorine Chem.* (158)2002, 115, 143.
- (159)Chisholm, M. H.; Gallucci, J.; Phomphrai, K. Inorg. Chem. 2002, 41, 2785.
- (160)Belanzoni, P.; Rosi, M.; Sgamellotti, A. J. Organomet. Chem. 2002, 648, 14.
- (161) Hayes, P. G.; Piers, W. E.; McDonald, R. J. Am. Chem. Soc. 2002, *124*, 2132.
- (162)Neculai, A. M.; Neculai, D.; Roesky, H. W.; Magull, J.; Baldus, M.; Andronesi, O.; Jansen, M. Organometallics 2002, 21, 2590.
- Cortright, S. B.; Johnston, J. N. Angew. Chem., Int. Ed. Engl. 2002, 41, 345. (163)
- (164) MacAdams, L. A.; Kim, W.-K.; Liable-Sands, L. M.; Guzei, I. A.; Rheingold, A. L.; Theopold, K. H. Organometallics **2002**, *21*, 952. (165) Andres, H.; Bominaar, E. L.; Smith, J. M.; Eckert, N. A.; Holland,
- P. L.; Münck, E. J. Am. Chem. Soc. 2002, 124, 3012
- Willems, S. T. H.; Budzelaar, P. H. M.; Moonen, N. N. P.; de (166)Gelder, R.; Smits, J. M. M.; Gal, A. W. Chem. Eur. J. 2002, 8, 1310.
- (167)
- Fekl, U.; Goldberg, K. I. *J. Am. Chem. Soc.* **2002**, *124*, 6804. Spencer, D. J. E.; Aboelella, N. W.; Reynolds, A. M.; Holland, P. (168)(109) Sperter, D. J. E., Abbelan, N. W., Reynous, A. M., Infinanci, T. L.; Tolman, W. B. *J. Am. Chem. Soc.* **2002**, *124*, 2108.
 (169) Yokota, S.; Tachi, Y.; Itoh, S. *Inorg. Chem.* **2002**, *41*, 1342.
 (170) Liu, Z.; Torrent, M.; Morokuma, K. *Organometallics* **2002**, *21*,
- 1056
- (171) Coates, G. W. J. Chem. Soc., Dalton Trans. 2002, 467.
 (172) Bergström, F.; Mikhalyov, I.; Hägglöf, P.; Wortmann, R.; Ny, T.; Johansson, L. B.-Ä. J. Am. Chem. Soc. 2002, 124, 196. Rao, M. N. S.; Roesky, H. W.; Anantharaman, G. J. Organomet. (173)
- Chem. 2002, 646, 4.
- (174)Kuhn, N.; Fuchs, S.; Steinmann, M. Z. Anorg. Allg. Chem. 2002, *628*, 458,
- Kuhn, N.; Fuchs, S.; Niquet, E.; Richter, M.; Steinmann, M. Z. (175)
- Anorg. Allg. Chem. **2002**, 628, 717. Burford, N.; Ragogna, P. J.; Robertson, K. N.; Cameron, T. S.; Hardman, N. J.; Power, P. P. J. Am. Chem. Soc. **2002**, 124, 382. Stender, M.; Power, P. P. Polyhedron **2002**, 21, 525. (176)
- (177)
- Cassani, M. C.; Gun'ko, Yu. K.; Hitchcock, P. B.; Hulkes, A. G.; (178)Khvostov, A. V.; Lappert, M. F.; Protchenko, A. V. J. Organomet. Chem. 2002, 647, 71
- Neculai, D.; Roesky, H. W.; Neculai, A. M.; Magull, J.; Schmidt, (179)
- H.-G.; Noltemeyer, M. J. Organomet. Chem. 2002, 643/644, 47. Yao, Y.; Zhang, Y.; Shen, Q.; Yu, K. Organometallics 2002, 21, (180) 819.
- (181) Shen, Q.; Yao, Y. J. Organomet. Chem. 2002, 647, 180.

CR010424R